Header

UZH-Logo

Maintenance Infos

Reorganization in secondary somatosensory cortex in chronic low back pain patients


Hotz-Boendermaker, Sabina; Marcar, Valentine L; Meier, Michael L; Boendermaker, Bart; Humphreys, Barry K (2016). Reorganization in secondary somatosensory cortex in chronic low back pain patients. Spine, 41(11):667-673.

Abstract

STUDY DESIGN: A cross-sectional comparative study between chronic low back pain (CLBP) patients and healthy control subjects.
OBJECTIVE: The aim of this study was to investigate reorganization in the sensory cortex by comparing cortical activity due to mechanosensory stimulation of the lumbar spine in CLBP patients versus a control group by using functional magnetic resonance imaging (fMRI).
SUMMARY OF BACKGROUND DATA: LBP is now the number 1 condition across the world in terms of years living with a disability. There is growing evidence that maladaptive changes in the processing of sensory input by the central nervous system are central to understanding chronic (back) pain.
METHODS: Nonpainful, posterior-anterior (PA) movement pressure was applied manually to lumbar vertebrae at L1, L3, and L5 in 13 healthy subjects and 13 CLBP patients. The manual pressure (30 N) was monitored and controlled using sensors. A randomized stimulation protocol was used consisting of 51 pressure stimuli of 5 seconds duration. fMRI data analysis was performed for the group activation within the primary and secondary sensory cortices (S1 and S2, respectively) and the representation of the individual vertebrae was extracted and statistically analyzed.
RESULTS: Nonpainful PA pressure revealed no cortical reorganization in S1. In contrast, the extent of S2 activation in the CLBP group was significantly reduced in both hemispheres. In the control group, a somatotopy was identified for the lumbar vertebrae between L1 and L3, respectively, and L5 in S2 of the right hemisphere. Most importantly, a blurring of the somatotopic representation of the lumbar spine in S2 was observed in the patient group.
CONCLUSION: Together, these maladaptive changes suggest a reorganization of higher-order processing for sensory information in CLBP patients that might have implications for a decreased sensory acuity, also related to body perception and subsequent altered functioning of the lumbar spine.
LEVEL OF EVIDENCE: 2.

Abstract

STUDY DESIGN: A cross-sectional comparative study between chronic low back pain (CLBP) patients and healthy control subjects.
OBJECTIVE: The aim of this study was to investigate reorganization in the sensory cortex by comparing cortical activity due to mechanosensory stimulation of the lumbar spine in CLBP patients versus a control group by using functional magnetic resonance imaging (fMRI).
SUMMARY OF BACKGROUND DATA: LBP is now the number 1 condition across the world in terms of years living with a disability. There is growing evidence that maladaptive changes in the processing of sensory input by the central nervous system are central to understanding chronic (back) pain.
METHODS: Nonpainful, posterior-anterior (PA) movement pressure was applied manually to lumbar vertebrae at L1, L3, and L5 in 13 healthy subjects and 13 CLBP patients. The manual pressure (30 N) was monitored and controlled using sensors. A randomized stimulation protocol was used consisting of 51 pressure stimuli of 5 seconds duration. fMRI data analysis was performed for the group activation within the primary and secondary sensory cortices (S1 and S2, respectively) and the representation of the individual vertebrae was extracted and statistically analyzed.
RESULTS: Nonpainful PA pressure revealed no cortical reorganization in S1. In contrast, the extent of S2 activation in the CLBP group was significantly reduced in both hemispheres. In the control group, a somatotopy was identified for the lumbar vertebrae between L1 and L3, respectively, and L5 in S2 of the right hemisphere. Most importantly, a blurring of the somatotopic representation of the lumbar spine in S2 was observed in the patient group.
CONCLUSION: Together, these maladaptive changes suggest a reorganization of higher-order processing for sensory information in CLBP patients that might have implications for a decreased sensory acuity, also related to body perception and subsequent altered functioning of the lumbar spine.
LEVEL OF EVIDENCE: 2.

Statistics

Altmetrics

Downloads

38 downloads since deposited on 17 Feb 2017
38 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:June 2016
Deposited On:17 Feb 2017 11:22
Last Modified:01 Jun 2017 00:02
Publisher:Lippincott Williams & Wilkins
ISSN:0362-2436
Publisher DOI:https://doi.org/10.1097/BRS.0000000000001348
PubMed ID:27244113

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher