Header

UZH-Logo

Maintenance Infos

Increasing cognitive load attenuates right arm swing in healthy human walking


Killeen, Tim; Easthope, Christopher S; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc (2017). Increasing cognitive load attenuates right arm swing in healthy human walking. Royal Society Open Science, 4(1):160993.

Abstract

Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

Abstract

Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

Statistics

Altmetrics

Downloads

3 downloads since deposited on 24 Mar 2017
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2017
Deposited On:24 Mar 2017 10:59
Last Modified:04 Aug 2017 15:55
Publisher:Royal Society of Chemistry
ISSN:2054-5703
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rsos.160993
PubMed ID:28280596

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations