Header

UZH-Logo

Maintenance Infos

Detection of clinically significant prostate cancer: short dual-pulse sequence versus standard multiparametric MR imaging-a multireader study


Barth, Borna K; De Visschere, Pieter J L; Cornelius, Alexander; Nicolau, Carlos; Vargas, Hebert Alberto; Eberli, Daniel; Donati, Olivio F (2017). Detection of clinically significant prostate cancer: short dual-pulse sequence versus standard multiparametric MR imaging-a multireader study. Radiology, 284(3):725-736.

Abstract

Purpose To compare the diagnostic performance of a short dual-pulse sequence magnetic resonance (MR) imaging protocol versus a standard six-pulse sequence multiparametric MR imaging protocol for detection of clinically significant prostate cancer. Materials and Methods This HIPAA-compliant study was approved by the regional ethics committee. Between July 2013 and March 2015, 63 patients from a prospectively accrued study population who underwent MR imaging of the prostate including transverse T1-weighted; transverse, coronal, and sagittal T2-weighted; diffusion-weighted; and dynamic contrast material-enhanced MR imaging with a 3-T imager at a single institution were included in this retrospective study. The short MR imaging protocol image set consisted of transverse T2-weighted and diffusion-weighted images only. The standard MR imaging protocol image set contained images from all six pulse sequences. Three expert readers from different institutions assessed the likelihood of prostate cancer on a five-point scale. Diagnostic performance on a quadrant basis was assessed by using areas under the receiver operating characteristic curves, and differences were evaluated by using 83.8% confidence intervals. Intra- and interreader agreement was assessed by using the intraclass correlation coefficient. Transperineal template saturation biopsy served as the standard of reference. Results At histopathologic evaluation, 84 of 252 (33%) quadrants were positive for cancer in 38 of 63 (60%) men. There was no significant difference in detection of tumors larger than or equal to 0.5 mL for any of the readers of the short MR imaging protocol, with areas under the curve in the range of 0.74-0.81 (83.8% confidence interval [CI]: 0.64, 0.89), and for readers of the standard MR imaging protocol, areas under the curve were 0.71-0.77 (83.8% CI: 0.62, 0.86). Ranges for sensitivity were 0.76-0.95 (95% CI: 0.53, 0.99) and 0.76-0.86 (95% CI: 0.53, 0.97) and those for specificity were 0.84-0.90 (95% CI: 0.79, 0.94) and 0.82-0.90 (95% CI: 0.77, 0.94) for the short and standard MR protocols, respectively. Ranges for interreader agreement were 0.48-0.60 (83.8% CI: 0.41, 0.66) and 0.49-0.63 (83.8% CI: 0.42, 0.68) for the short and standard MR imaging protocols. Conclusion For the detection of clinically significant prostate cancer, no difference was found in the diagnostic performance of the short MR imaging protocol consisting of only transverse T2-weighted and diffusion-weighted imaging pulse sequences compared with that of a standard multiparametric MR imaging protocol. (©) RSNA, 2017 Online supplemental material is available for this article.

Abstract

Purpose To compare the diagnostic performance of a short dual-pulse sequence magnetic resonance (MR) imaging protocol versus a standard six-pulse sequence multiparametric MR imaging protocol for detection of clinically significant prostate cancer. Materials and Methods This HIPAA-compliant study was approved by the regional ethics committee. Between July 2013 and March 2015, 63 patients from a prospectively accrued study population who underwent MR imaging of the prostate including transverse T1-weighted; transverse, coronal, and sagittal T2-weighted; diffusion-weighted; and dynamic contrast material-enhanced MR imaging with a 3-T imager at a single institution were included in this retrospective study. The short MR imaging protocol image set consisted of transverse T2-weighted and diffusion-weighted images only. The standard MR imaging protocol image set contained images from all six pulse sequences. Three expert readers from different institutions assessed the likelihood of prostate cancer on a five-point scale. Diagnostic performance on a quadrant basis was assessed by using areas under the receiver operating characteristic curves, and differences were evaluated by using 83.8% confidence intervals. Intra- and interreader agreement was assessed by using the intraclass correlation coefficient. Transperineal template saturation biopsy served as the standard of reference. Results At histopathologic evaluation, 84 of 252 (33%) quadrants were positive for cancer in 38 of 63 (60%) men. There was no significant difference in detection of tumors larger than or equal to 0.5 mL for any of the readers of the short MR imaging protocol, with areas under the curve in the range of 0.74-0.81 (83.8% confidence interval [CI]: 0.64, 0.89), and for readers of the standard MR imaging protocol, areas under the curve were 0.71-0.77 (83.8% CI: 0.62, 0.86). Ranges for sensitivity were 0.76-0.95 (95% CI: 0.53, 0.99) and 0.76-0.86 (95% CI: 0.53, 0.97) and those for specificity were 0.84-0.90 (95% CI: 0.79, 0.94) and 0.82-0.90 (95% CI: 0.77, 0.94) for the short and standard MR protocols, respectively. Ranges for interreader agreement were 0.48-0.60 (83.8% CI: 0.41, 0.66) and 0.49-0.63 (83.8% CI: 0.42, 0.68) for the short and standard MR imaging protocols. Conclusion For the detection of clinically significant prostate cancer, no difference was found in the diagnostic performance of the short MR imaging protocol consisting of only transverse T2-weighted and diffusion-weighted imaging pulse sequences compared with that of a standard multiparametric MR imaging protocol. (©) RSNA, 2017 Online supplemental material is available for this article.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:27 March 2017
Deposited On:05 Apr 2017 06:50
Last Modified:22 Aug 2017 01:01
Publisher:Radiological Society of North America
ISSN:0033-8419
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1148/radiol.2017162020
PubMed ID:28346073

Download

Full text not available from this repository.
View at publisher