Header

UZH-Logo

Maintenance Infos

Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans


Stegen, Gwij; Pasmans, Frank; Schmidt, Benedikt R; Rouffaer, Lieze O; Van Praet, Sarah; Schaub, Michael; Canessa, Stefano; Laudelout, Arnaud; Kinet, Thierry; Adriaensen, Connie; Haesebrouck, Freddy; Bert, Wim; Bossuyt, Franky; Martel, An (2017). Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature, 544(7650):353-356.

Abstract

The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen’s disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a ‘perfect storm’ that is able to rapidly extirpate highly susceptible salamander populations across Europe.

Abstract

The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen’s disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a ‘perfect storm’ that is able to rapidly extirpate highly susceptible salamander populations across Europe.

Statistics

Citations

4 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:amphibian, salamander, chytridiomycosis, Batrachochytrium salamandrivorans, epidemiology
Language:English
Date:2017
Deposited On:25 Apr 2017 12:23
Last Modified:25 Apr 2017 12:25
Publisher:Nature Publishing Group
ISSN:0028-0836
Publisher DOI:https://doi.org/10.1038/nature22059

Download

Full text not available from this repository.
View at publisher