Header

UZH-Logo

Maintenance Infos

Tetrahydroisoquinoline derivatives: a new perspective on monoaminergic dysfunction in children with ADHD?


Roessner, V; Walitza, S; Riederer, F; Hünnerkopf, R; Rothenberger, A; Gerlach, M; Moser, A (2007). Tetrahydroisoquinoline derivatives: a new perspective on monoaminergic dysfunction in children with ADHD? Behavioral and Brain Functions, 3:64.

Abstract

BACKGROUND: The dopamine-derived tetrahydroisoquinolines (TIQ) synthesized endogeneously from aldehydes and catecholamines have shown to modulate neurotransmission, central metabolism and motor activity. Converging evidence has implicated abnormalities of the dopamine metabolism to the pathophysiology of Attention-Deficit/Hyperactivity Disorder (ADHD). Therefore, four TIQ derivatives involved in central dopamine metabolism (salsolinol, N-methyl-salsolinol, norsalsolinol, N-methyl-norsalsolinol) have been analyzed for the first time in children and adolescents with ADHD and healthy controls. METHODS: 42 children and adolescents with ADHD and 24 controls from three sites participated in this pilot study. Free and bound amounts of salsolinol, N-methyl-salsolinol, norsalsolinol, N-methyl-norsalsolinol have been analyzed in urine. RESULTS: In the ADHD group, free and total amounts of the four TIQ derivatives in urine were significantly higher compared to urine levels of healthy controls. For N-methyl-salsolinolfree, most of the ADHD patients were identified correctly with a sensitivity of 92.5% (specificity 94.4%). CONCLUSION: Urine levels of salsolinol, N-methyl-salsolinol, norsalsolinol and N-methyl-norsalsolinol are elevated in children and adolescents with ADHD and point to a new perspective on catecholaminergic dysfunction in ADHD. However, replication and extension of this pilot study would progress this innovative and promising field.

Abstract

BACKGROUND: The dopamine-derived tetrahydroisoquinolines (TIQ) synthesized endogeneously from aldehydes and catecholamines have shown to modulate neurotransmission, central metabolism and motor activity. Converging evidence has implicated abnormalities of the dopamine metabolism to the pathophysiology of Attention-Deficit/Hyperactivity Disorder (ADHD). Therefore, four TIQ derivatives involved in central dopamine metabolism (salsolinol, N-methyl-salsolinol, norsalsolinol, N-methyl-norsalsolinol) have been analyzed for the first time in children and adolescents with ADHD and healthy controls. METHODS: 42 children and adolescents with ADHD and 24 controls from three sites participated in this pilot study. Free and bound amounts of salsolinol, N-methyl-salsolinol, norsalsolinol, N-methyl-norsalsolinol have been analyzed in urine. RESULTS: In the ADHD group, free and total amounts of the four TIQ derivatives in urine were significantly higher compared to urine levels of healthy controls. For N-methyl-salsolinolfree, most of the ADHD patients were identified correctly with a sensitivity of 92.5% (specificity 94.4%). CONCLUSION: Urine levels of salsolinol, N-methyl-salsolinol, norsalsolinol and N-methyl-norsalsolinol are elevated in children and adolescents with ADHD and point to a new perspective on catecholaminergic dysfunction in ADHD. However, replication and extension of this pilot study would progress this innovative and promising field.

Statistics

Citations

3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

264 downloads since deposited on 19 Mar 2009
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Center for Child and Adolescent Psychiatry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2007
Deposited On:19 Mar 2009 14:00
Last Modified:06 Dec 2017 18:07
Publisher:BioMed Central
ISSN:1744-9081
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1744-9081-3-64
PubMed ID:18070346

Download

Download PDF  'Tetrahydroisoquinoline derivatives: a new perspective on monoaminergic dysfunction in children with ADHD?'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)