Header

UZH-Logo

Maintenance Infos

Necroptosis execution is mediated by plasma membrane nanopores independent of calcium


Ros, Uris; Peña-Blanco, Aida; Hänggi, Kay; Kunzendorf, Ulrich; Krautwald, Stefan; Wong, W Wei-Lynn; García-Sáez, Ana J (2017). Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Reports, 19(1):175-187.

Abstract

Necroptosis is a form of regulated necrosis that results in cell death and content release after plasma membrane permeabilization. However, little is known about the molecular events responsible for the disruption of the plasma membrane. Here, we find that early increase in cytosolic calcium in TNF-induced necroptosis is mediated by treatment with a Smac mimetic via the TNF/RIP1/TAK1 survival pathway. This does not require the activation of the necrosome and is dispensable for necroptosis. Necroptosis induced by the activation of TLR3/4 pathways does not trigger early calcium flux. We also demonstrate that necroptotic plasma membrane rupture is mediated by osmotic forces and membrane pores around 4 nm in diameter. This late permeabilization step represents a hallmark in necroptosis execution that is cell and treatment independent and requires the RIP1/RIP3/MLKL core. In support of this, treatment with osmoprotectants reduces cell damage in an in vivo necroptosis model of ischemia-reperfusion injury.

Abstract

Necroptosis is a form of regulated necrosis that results in cell death and content release after plasma membrane permeabilization. However, little is known about the molecular events responsible for the disruption of the plasma membrane. Here, we find that early increase in cytosolic calcium in TNF-induced necroptosis is mediated by treatment with a Smac mimetic via the TNF/RIP1/TAK1 survival pathway. This does not require the activation of the necrosome and is dispensable for necroptosis. Necroptosis induced by the activation of TLR3/4 pathways does not trigger early calcium flux. We also demonstrate that necroptotic plasma membrane rupture is mediated by osmotic forces and membrane pores around 4 nm in diameter. This late permeabilization step represents a hallmark in necroptosis execution that is cell and treatment independent and requires the RIP1/RIP3/MLKL core. In support of this, treatment with osmoprotectants reduces cell damage in an in vivo necroptosis model of ischemia-reperfusion injury.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
4 citations in Scopus®
5 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 03 May 2017
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2017
Deposited On:03 May 2017 15:39
Last Modified:29 Mar 2018 04:33
Publisher:Cell Press (Elsevier)
ISSN:2211-1247
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.celrep.2017.03.024
PubMed ID:28380356
Project Information:
  • : FunderFP7
  • : Grant ID309966
  • : Project TitleAPOQUANT - The quantitative Bcl-2 interactome in apoptosis: decoding how cancer cells escape death

Download

Download PDF  'Necroptosis execution is mediated by plasma membrane nanopores independent of calcium'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)