Header

UZH-Logo

Maintenance Infos

Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study


Hombach, Michael; Jetter, Marion; Blöchliger, Nicolas; Kolesnik-Goldmann, Natalia; Böttger, Erik C (2017). Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. Journal of Antimicrobial Chemotherapy, 72(6):1659-1668.

Abstract

Background Antibiotic resistance poses a significant threat to patients suffering from infectious diseases. Early readings of antibiotic susceptibility test (AST) results could be of critical importance to ensure adequate treatment. Disc diffusion is a well-standardized, established and cost-efficient AST procedure; however, its use in the clinical laboratory is hampered by the many manual steps involved, and an incubation time of 16-18 h, which is required to achieve reliable test results. Methods We have evaluated a fully automated system for its potential for early reading of disc diffusion diameters after 6-12 h of incubation. We assessed availability of results, methodological precision, categorical agreement and interpretation errors as compared with an 18 h standard. In total, 1028 clinical strains (291 Escherichia coli , 272 Klebsiella pneumoniae , 176 Staphylococcus aureus and 289 Staphylococcus epidermidis ) were included in this study. Disc diffusion plates were streaked, incubated and imaged using the WASPLab TM automation system. Results and conclusions Our results demonstrate that: (i) early AST reading is possible for important pathogens; (ii) methodological precision is not hampered at early timepoints; and (iii) species-specific reading times must be selected. As inhibition zone diameters change over time and are phenotype/drug combination dependent, specific cut-offs and expert rules will be essential to ensure reliable interpretation and reporting of early susceptibility testing results.

Abstract

Background Antibiotic resistance poses a significant threat to patients suffering from infectious diseases. Early readings of antibiotic susceptibility test (AST) results could be of critical importance to ensure adequate treatment. Disc diffusion is a well-standardized, established and cost-efficient AST procedure; however, its use in the clinical laboratory is hampered by the many manual steps involved, and an incubation time of 16-18 h, which is required to achieve reliable test results. Methods We have evaluated a fully automated system for its potential for early reading of disc diffusion diameters after 6-12 h of incubation. We assessed availability of results, methodological precision, categorical agreement and interpretation errors as compared with an 18 h standard. In total, 1028 clinical strains (291 Escherichia coli , 272 Klebsiella pneumoniae , 176 Staphylococcus aureus and 289 Staphylococcus epidermidis ) were included in this study. Disc diffusion plates were streaked, incubated and imaged using the WASPLab TM automation system. Results and conclusions Our results demonstrate that: (i) early AST reading is possible for important pathogens; (ii) methodological precision is not hampered at early timepoints; and (iii) species-specific reading times must be selected. As inhibition zone diameters change over time and are phenotype/drug combination dependent, specific cut-offs and expert rules will be essential to ensure reliable interpretation and reporting of early susceptibility testing results.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 June 2017
Deposited On:21 Jun 2017 15:50
Last Modified:30 Jul 2017 05:23
Publisher:Oxford University Press
ISSN:0305-7453
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/jac/dkx026
PubMed ID:28333189

Download

Full text not available from this repository.
View at publisher