Header

UZH-Logo

Maintenance Infos

Procalcitonin and midregional proatrial natriuretic peptide as biomarkers of subclinical cerebrovascular damage: the northern manhattan study


Katan, Mira; Moon, Yeseon; von Eckardstein, Arnold; Spanaus, Kathartina; DeRosa, Janet; Gutierrez, Jose; DeCarli, Charles; Wright, Clinton; Sacco, Ralph; Elkind, Mitchell (2017). Procalcitonin and midregional proatrial natriuretic peptide as biomarkers of subclinical cerebrovascular damage: the northern manhattan study. Stroke, 48(3):604-610.

Abstract

BACKGROUND AND PURPOSE: Chronic infections and cardiac dysfunction are risk factors for stroke. We hypothesized that blood biomarkers of infection (procalcitonin) and cardiac dysfunction (midregional proatrial natriuretic peptide [MR-proANP]), previously associated with small vessel stroke and cardioembolic stroke are also associated with subclinical cerebrovascular damage, including silent brain infarcts and white matter hyperintensity volume.
METHODS: The NOMAS (Northern Manhattan Study) was designed to assess risk factors for incident vascular disease in a multiethnic cohort. A subsample underwent brain magnetic resonance imaging and had blood samples available for biomarker measurement (n=1178). We used logistic regression models to estimate the odds ratios and 95% confidence intervals (95% CIs) for the association of these biomarkers with silent brain infarcts after adjusting for demographic, behavioral, and medical risk factors. We used linear regression to assess associations with log-white matter hyperintensity volume.
RESULTS: Mean age was 70±9 years; 60% were women, 66% Hispanic, 17% black, and 15% were white. After adjusting for risk factors, subjects with procalcitonin or MR-proANP in the top quartile, compared with the lowest quartile were more likely to have silent brain infarcts (adjusted odds ratio for procalcitonin, 2.2; 95% CI, 1.3-3.7 and for MR-proANP, 3.3; 95% CI, 1.7-6.3) and increased white matter hyperintensity volume (adjusted mean change in log-white matter hyperintensity volume for procalcitonin, 0.29; 95% CI, 0.13-0.44 and for MR-proANP, 0.18; 95% CI, 0.004-0.36).
CONCLUSIONS: Higher concentrations of procalcitonin, a marker of infection, and MR-proANP, a marker of cardiac dysfunction, are independently associated with subclinical cerebrovascular damage. If further studies demonstrate an incremental value for risk stratification, biomarker-guided primary prevention studies may lead to new approaches to prevent cerebrovascular disease.

Abstract

BACKGROUND AND PURPOSE: Chronic infections and cardiac dysfunction are risk factors for stroke. We hypothesized that blood biomarkers of infection (procalcitonin) and cardiac dysfunction (midregional proatrial natriuretic peptide [MR-proANP]), previously associated with small vessel stroke and cardioembolic stroke are also associated with subclinical cerebrovascular damage, including silent brain infarcts and white matter hyperintensity volume.
METHODS: The NOMAS (Northern Manhattan Study) was designed to assess risk factors for incident vascular disease in a multiethnic cohort. A subsample underwent brain magnetic resonance imaging and had blood samples available for biomarker measurement (n=1178). We used logistic regression models to estimate the odds ratios and 95% confidence intervals (95% CIs) for the association of these biomarkers with silent brain infarcts after adjusting for demographic, behavioral, and medical risk factors. We used linear regression to assess associations with log-white matter hyperintensity volume.
RESULTS: Mean age was 70±9 years; 60% were women, 66% Hispanic, 17% black, and 15% were white. After adjusting for risk factors, subjects with procalcitonin or MR-proANP in the top quartile, compared with the lowest quartile were more likely to have silent brain infarcts (adjusted odds ratio for procalcitonin, 2.2; 95% CI, 1.3-3.7 and for MR-proANP, 3.3; 95% CI, 1.7-6.3) and increased white matter hyperintensity volume (adjusted mean change in log-white matter hyperintensity volume for procalcitonin, 0.29; 95% CI, 0.13-0.44 and for MR-proANP, 0.18; 95% CI, 0.004-0.36).
CONCLUSIONS: Higher concentrations of procalcitonin, a marker of infection, and MR-proANP, a marker of cardiac dysfunction, are independently associated with subclinical cerebrovascular damage. If further studies demonstrate an incremental value for risk stratification, biomarker-guided primary prevention studies may lead to new approaches to prevent cerebrovascular disease.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Language:English
Date:March 2017
Deposited On:23 Jun 2017 10:41
Last Modified:24 Jun 2017 07:54
Publisher:American Heart Association
ISSN:0039-2499
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1161/STROKEAHA.116.014945
PubMed ID:28123058

Download

Full text not available from this repository.
View at publisher