Header

UZH-Logo

Maintenance Infos

Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis


Jaeger, Seraina; Virchow, F; Torgerson, Paul R; Bischoff, M; Biner, B; Hartnack, Sonja; Rüegg, Simon R (2017). Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis. Journal of Dairy Science, 100(9):7419-7426.

Abstract

Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MMA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian latent class analysis, we were able to identify a more differentiated use of the 3 diagnostic tools. The MAA-ELISA is a valuable addition to existing tools for the diagnosis of subclinical mastitis.

Abstract

Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MMA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian latent class analysis, we were able to identify a more differentiated use of the 3 diagnostic tools. The MAA-ELISA is a valuable addition to existing tools for the diagnosis of subclinical mastitis.

Statistics

Citations

Altmetrics

Downloads

17 downloads since deposited on 27 Jun 2017
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Chair in Veterinary Epidemiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:Bayesian latent class, bacteriological culture, milk amyloid A, somatic cell count, subclinical mastitis
Language:English
Date:2017
Deposited On:27 Jun 2017 13:44
Last Modified:19 Feb 2018 08:07
Publisher:Elsevier
ISSN:0022-0302
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3168/jds.2016-12446
PubMed ID:28647334

Download

Download PDF  'Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 417kB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)