Header

UZH-Logo

Maintenance Infos

A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila


Harmansa, Stefan; Alborelli, Ilaria; Bieli, Dimitri; Caussinus, Emmanuel; Affolter, Markus (2017). A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife, 6:e22549.

Abstract

The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.

Abstract

The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
5 citations in Scopus®
5 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 04 Jul 2017
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2017
Deposited On:04 Jul 2017 13:49
Last Modified:19 Feb 2018 08:10
Publisher:eLife Sciences Publications Ltd.
ISSN:2050-084X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.7554/eLife.22549
PubMed ID:28395731

Download

Download PDF  'A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 7MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)