Header

UZH-Logo

Maintenance Infos

Protein epitope mimetics: from new antibiotics to supramolecular synthetic vaccines


Zerbe, Katja; Moehle, Kerstin; Robinson, John A (2017). Protein epitope mimetics: from new antibiotics to supramolecular synthetic vaccines. Accounts of chemical research, 50(6):1323-1331.

Abstract

Protein epitope mimetics provide powerful tools to study biomolecular recognition in many areas of chemical biology. They may also provide access to new biologically active molecules and potentially to new classes of drug and vaccine candidates. Here we highlight approaches for the design of folded, structurally defined epitope mimetics, by incorporating backbone and side chains of hot residues onto a stable constrained scaffold. Using robust synthetic methods, the structural, biological, and physical properties of epitope mimetics can be optimized, by variation of both side chain and backbone chemistry. To illustrate the potential of protein epitope mimetics in medicinal chemistry and biotechnology, we present studies in two areas of infectology; the discovery of new antibiotics targeting essential outer membrane (OM) proteins in Gram-negative bacteria and the design of supramolecular synthetic vaccines. The discovery of new antibiotics with novel mechanisms of action, in particular to combat infections caused by Gram-negative pathogens, represents a major challenge in medicinal chemistry. We were inspired by naturally occurring cationic antimicrobial peptides to design structurally related peptidomimetics and to optimize their antimicrobial properties through library synthesis and screening. Through these efforts, we could show that antimicrobial β-hairpin mimetics may have structures and properties that facilitate interactions with essential bacterial β-barrel OM proteins. One recently discovered family of antimicrobial peptidomimetics targets the β-barrel protein LptD in Pseudomonas spp. This protein plays a key role in lipopolysaccaride (LPS) transport to the cell surface during OM biogenesis. Through a highly selective interaction with LptD, the peptidomimetic blocks LPS transport, resulting in nanomolar antimicrobial activity against the important human pathogen P. aeruginosa. Epitope mimetics may also have great potential in the field of vaccinology, where structural information on complexes between neutralizing antibodies and their cognate epitopes can be taken as a starting point for B cell epitope mimetic design. In order to generate potent immune responses, an effective method of delivering epitope mimetics to relevant cells and tissues in the immune system is also required. For this, engineered synthetic nanoparticles (synthetic virus-like particles, SVLPs) prepared using supramolecular chemistry can be designed with optimal surface properties for efficient dendritic cell-mediated delivery of folded B-cell and linear T-cell epitopes, along with ligands for pattern recognition receptors, into lymphoid tissues. In this way, multivalent display of the epitope mimetics occurs over the surface of the nanoparticle, suitable for cross-linking B cell receptors. In this highly immunogenic format, strong epitope-specific humoral immune responses can be elicited that target infections caused by pathogenic microorganisms. Other potential applications of epitope mimetics in next-generation therapeutics are also discussed.

Abstract

Protein epitope mimetics provide powerful tools to study biomolecular recognition in many areas of chemical biology. They may also provide access to new biologically active molecules and potentially to new classes of drug and vaccine candidates. Here we highlight approaches for the design of folded, structurally defined epitope mimetics, by incorporating backbone and side chains of hot residues onto a stable constrained scaffold. Using robust synthetic methods, the structural, biological, and physical properties of epitope mimetics can be optimized, by variation of both side chain and backbone chemistry. To illustrate the potential of protein epitope mimetics in medicinal chemistry and biotechnology, we present studies in two areas of infectology; the discovery of new antibiotics targeting essential outer membrane (OM) proteins in Gram-negative bacteria and the design of supramolecular synthetic vaccines. The discovery of new antibiotics with novel mechanisms of action, in particular to combat infections caused by Gram-negative pathogens, represents a major challenge in medicinal chemistry. We were inspired by naturally occurring cationic antimicrobial peptides to design structurally related peptidomimetics and to optimize their antimicrobial properties through library synthesis and screening. Through these efforts, we could show that antimicrobial β-hairpin mimetics may have structures and properties that facilitate interactions with essential bacterial β-barrel OM proteins. One recently discovered family of antimicrobial peptidomimetics targets the β-barrel protein LptD in Pseudomonas spp. This protein plays a key role in lipopolysaccaride (LPS) transport to the cell surface during OM biogenesis. Through a highly selective interaction with LptD, the peptidomimetic blocks LPS transport, resulting in nanomolar antimicrobial activity against the important human pathogen P. aeruginosa. Epitope mimetics may also have great potential in the field of vaccinology, where structural information on complexes between neutralizing antibodies and their cognate epitopes can be taken as a starting point for B cell epitope mimetic design. In order to generate potent immune responses, an effective method of delivering epitope mimetics to relevant cells and tissues in the immune system is also required. For this, engineered synthetic nanoparticles (synthetic virus-like particles, SVLPs) prepared using supramolecular chemistry can be designed with optimal surface properties for efficient dendritic cell-mediated delivery of folded B-cell and linear T-cell epitopes, along with ligands for pattern recognition receptors, into lymphoid tissues. In this way, multivalent display of the epitope mimetics occurs over the surface of the nanoparticle, suitable for cross-linking B cell receptors. In this highly immunogenic format, strong epitope-specific humoral immune responses can be elicited that target infections caused by pathogenic microorganisms. Other potential applications of epitope mimetics in next-generation therapeutics are also discussed.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 14 Aug 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2017
Deposited On:14 Aug 2017 12:07
Last Modified:14 Aug 2017 12:07
Publisher:American Chemical Society (ACS)
ISSN:0001-4842
Publisher DOI:https://doi.org/10.1021/acs.accounts.7b00129
PubMed ID:28570824

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 6MB
View at publisher