Header

UZH-Logo

Maintenance Infos

Phosphate transporters: a tale of two solute carrier families


Virkki, L V; Biber, J; Murer, H; Forster, I C (2007). Phosphate transporters: a tale of two solute carrier families. American Journal of Physiology. Renal Physiology, 293(3):F643-F654.

Abstract

Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.

Abstract

Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.

Statistics

Citations

Dimensions.ai Metrics
128 citations in Web of Science®
146 citations in Scopus®
198 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

110 downloads since deposited on 20 Mar 2009
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:September 2007
Deposited On:20 Mar 2009 12:12
Last Modified:18 Feb 2018 12:46
Publisher:American Physiological Society
ISSN:0363-6127
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1152/ajprenal.00228.2007
PubMed ID:17581921

Download

Download PDF  'Phosphate transporters: a tale of two solute carrier families'.
Preview
Filetype: PDF
Size: 2MB
View at publisher