Header

UZH-Logo

Maintenance Infos

2-Methoxyestradiol, an estradiol metabolite, inhibits neointima formation and smooth muscle cell growth via double blockade of the cell cycle


Barchiesi, F; Jackson, E K; Fingerle, J; Gillespie, D G; Odermatt, B; Dubey, R K (2006). 2-Methoxyestradiol, an estradiol metabolite, inhibits neointima formation and smooth muscle cell growth via double blockade of the cell cycle. Circulation Research, 99(3):266-274.

Abstract

2-Methoxyestradiol (2-ME), an endogenous metabolite of estradiol with no affinity for estrogen receptors, is a potent anticarcinogenic agent (in phase II clinical trials) and mediates the inhibitory effects of estradiol on smooth muscle cell (SMC) growth. Here we studied the intracellular mechanisms by which 2-ME inhibits SMC growth and whether 2-ME prevents injury-induced neointima formation. 2-ME concentrations that inhibit proliferation of cycling human aortic SMCs by >or=50% blocked cell-cycle progression in G(0)/G(1) and in G(2)/M phase, as determined by flow cytometry. Consistent with the cell-cycle effects, at a molecular level (Western blots), 2-ME inhibited cyclin D(1) and cyclin B(1) expression; cyclin-dependent kinase (cdk)-1 and cdk-2 activity; and retinoblastoma protein (pRb), extracellular signal-regulated kinase (ERK) 1/2, and Akt phosphorylation. 2-ME also upregulated the Cdk inhibitor p27 and interfered with tubulin polymerization. Moreover, 2-ME augmented COX-2 expression, suggesting that it may also inhibit SMC growth via prostaglandin formation. In rats, treatment with 2-ME abrogated injury-induced neointima formation; decreased proliferating SMCs; downregulated expression of proliferating-cell nuclear antigen (PCNA), c-myc, cyclin D(1), cyclin B(1), phosphorylated Akt, phosphorylated ERK1/2, p21, and pRb; inhibited cdk-1 and cdk-4 activity; and upregulated expression of cyclooxygenase (COX)-2 and p27. Caspase-3 cleavage assay and fluorescence-activated cell-sorting (FACS) analysis showed no evidence of apoptosis in 2-ME-treated SMCs, and TUNEL staining in carotid segments showed no evidence of 2-ME-induced apoptosis in vivo. The antimitotic effects of 2-ME on SMCs are mediated by the inhibition of key cell-cycle regulatory proteins and effects on tubulin polymerization and COX-2 upregulation. These effects of 2-ME most likely contribute to the antivasoocclusive actions of this endogenous compound.

Abstract

2-Methoxyestradiol (2-ME), an endogenous metabolite of estradiol with no affinity for estrogen receptors, is a potent anticarcinogenic agent (in phase II clinical trials) and mediates the inhibitory effects of estradiol on smooth muscle cell (SMC) growth. Here we studied the intracellular mechanisms by which 2-ME inhibits SMC growth and whether 2-ME prevents injury-induced neointima formation. 2-ME concentrations that inhibit proliferation of cycling human aortic SMCs by >or=50% blocked cell-cycle progression in G(0)/G(1) and in G(2)/M phase, as determined by flow cytometry. Consistent with the cell-cycle effects, at a molecular level (Western blots), 2-ME inhibited cyclin D(1) and cyclin B(1) expression; cyclin-dependent kinase (cdk)-1 and cdk-2 activity; and retinoblastoma protein (pRb), extracellular signal-regulated kinase (ERK) 1/2, and Akt phosphorylation. 2-ME also upregulated the Cdk inhibitor p27 and interfered with tubulin polymerization. Moreover, 2-ME augmented COX-2 expression, suggesting that it may also inhibit SMC growth via prostaglandin formation. In rats, treatment with 2-ME abrogated injury-induced neointima formation; decreased proliferating SMCs; downregulated expression of proliferating-cell nuclear antigen (PCNA), c-myc, cyclin D(1), cyclin B(1), phosphorylated Akt, phosphorylated ERK1/2, p21, and pRb; inhibited cdk-1 and cdk-4 activity; and upregulated expression of cyclooxygenase (COX)-2 and p27. Caspase-3 cleavage assay and fluorescence-activated cell-sorting (FACS) analysis showed no evidence of apoptosis in 2-ME-treated SMCs, and TUNEL staining in carotid segments showed no evidence of 2-ME-induced apoptosis in vivo. The antimitotic effects of 2-ME on SMCs are mediated by the inhibition of key cell-cycle regulatory proteins and effects on tubulin polymerization and COX-2 upregulation. These effects of 2-ME most likely contribute to the antivasoocclusive actions of this endogenous compound.

Statistics

Citations

51 citations in Web of Science®
55 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reproductive Endocrinology
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:4 August 2006
Deposited On:18 Mar 2009 19:53
Last Modified:06 Dec 2017 18:13
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7330
Publisher DOI:https://doi.org/10.1161/01.RES.0000233318.85181.2e
PubMed ID:16794187

Download