Header

UZH-Logo

Maintenance Infos

Suppression of the auditory N1-component for heartbeat-related sounds reflects interoceptive predictive coding


van Elk, Michiel; Lenggenhager, Bigna; Heydrich, Lukas; Blanke, Olaf (2014). Suppression of the auditory N1-component for heartbeat-related sounds reflects interoceptive predictive coding. Biological Psychology, 99:172-182.

Abstract

Although many studies have elucidated the neurocognitive mechanisms supporting the processing of externally generated sensory signals, less is known about the processing of interoceptive signals related to the viscera. Drawing a parallel with research on agency and the perception of self-generated action effects, in the present EEG study we report a reduced auditory N1 component when participants listened to heartbeat-related sounds compared to externally generated sounds. The auditory suppression for heartbeat sounds was robust and persisted after controlling for ECG-related artifacts, the number of trials involved and the phase of the cardiac cycle. In addition, the auditory N1 suppression for heartbeat-related sounds had a comparable scalp distribution as the N1 suppression observed for actively generated sounds. This finding indicates that the brain automatically differentiates between heartbeat-related and externally generated sounds through a process of sensory suppression, suggesting that a comparable predictive mechanism may underlie the processing of heartbeat and action-related information. Extending recent behavioral data about cardio-visual integration, the present cardio-auditory EEG data reveal that the processing of sounds in auditory cortex is systematically modulated by an interoceptive cardiac signal. The findings are discussed with respect to theories of interoceptive awareness, emotion, predictive coding, and their relevance to bodily self-consciousness.

Abstract

Although many studies have elucidated the neurocognitive mechanisms supporting the processing of externally generated sensory signals, less is known about the processing of interoceptive signals related to the viscera. Drawing a parallel with research on agency and the perception of self-generated action effects, in the present EEG study we report a reduced auditory N1 component when participants listened to heartbeat-related sounds compared to externally generated sounds. The auditory suppression for heartbeat sounds was robust and persisted after controlling for ECG-related artifacts, the number of trials involved and the phase of the cardiac cycle. In addition, the auditory N1 suppression for heartbeat-related sounds had a comparable scalp distribution as the N1 suppression observed for actively generated sounds. This finding indicates that the brain automatically differentiates between heartbeat-related and externally generated sounds through a process of sensory suppression, suggesting that a comparable predictive mechanism may underlie the processing of heartbeat and action-related information. Extending recent behavioral data about cardio-visual integration, the present cardio-auditory EEG data reveal that the processing of sounds in auditory cortex is systematically modulated by an interoceptive cardiac signal. The findings are discussed with respect to theories of interoceptive awareness, emotion, predictive coding, and their relevance to bodily self-consciousness.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:May 2014
Deposited On:21 Sep 2017 15:23
Last Modified:24 Sep 2017 05:11
Publisher:Elsevier
ISSN:0301-0511
Publisher DOI:https://doi.org/10.1016/j.biopsycho.2014.03.004
PubMed ID:24680787

Download

Full text not available from this repository.
View at publisher