Header

UZH-Logo

Maintenance Infos

Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system


Valenzuela-Sanchez, A; Schmidt, B R; Uribe-Rivera, D E; Costas, F; Cunningham, A A; Soto-Azat, C (2017). Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proceedings of the Royal Society of London, Series B: Biological Sciences, 284:1176.

Abstract

The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host–parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii–Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality.

Abstract

The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host–parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii–Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 27 Sep 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:amphibian, chytridiomycosis, population decline, epidemiology
Language:English
Date:27 September 2017
Deposited On:27 Sep 2017 13:15
Last Modified:27 Sep 2017 13:17
Publisher:Royal Society Publishing
ISSN:0962-8452
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rspb.2017.1176

Download