Header

UZH-Logo

Maintenance Infos

Automated dissection of permanent effects of hippocampal or prefrontal lesions on performance at spatial, working memory and circadian timing tasks of C57BL/6 mice in IntelliCage


Voikar, Vootele; Krackow, Sven; Lipp, Hans-Peter; Rau, Anton; Colacicco, Giovanni; Wolfer, David P (2017). Automated dissection of permanent effects of hippocampal or prefrontal lesions on performance at spatial, working memory and circadian timing tasks of C57BL/6 mice in IntelliCage. Behavioural Brain Research:Epub ahead of print.

Abstract

To evaluate permanent effects of hippocampal and prefrontal cortex lesion on spatial tasks, lesioned and sham-operated female C57BL/6 mice were exposed to a series of conditioning schemes in IntelliCages housing 8–10 transponder-tagged mice from each treatment group. Sequential testing started at 51–172 days after bilateral lesions and lasted for 154 and 218 days in two batches of mice, respectively. Spontaneous undisturbed behavioral patterns clearly separated the three groups, hippocampals being characterized by more erratic hyperactivity, and strongly impaired circadian synchronization ability. Hippocampal lesions led to deficits in spatial passive avoidance, as well as in spatial reference and working memory tasks. Impairment was minimal in rewarded preference/reversal schemes, but prominent if behavioral responses required precise circadian timing or included punishment of wrong spatial choices. No differences between sham-operated and prefrontally lesioned subjects in conditioning success were discernible. These results corroborate the view that hippocampal dysfunction spares simple spatial learning tasks but impairs the ability to cope with conflicting task-inherent spatial, temporal or emotional cues. Methodologically, the results show that automated testing and data analysis of socially kept mice is a powerful, efficient and animal-friendly tool for dissecting complex features and behavioral profiles of hippocampal dysfunction characterizing many transgenic or pharmacological mouse models.

Abstract

To evaluate permanent effects of hippocampal and prefrontal cortex lesion on spatial tasks, lesioned and sham-operated female C57BL/6 mice were exposed to a series of conditioning schemes in IntelliCages housing 8–10 transponder-tagged mice from each treatment group. Sequential testing started at 51–172 days after bilateral lesions and lasted for 154 and 218 days in two batches of mice, respectively. Spontaneous undisturbed behavioral patterns clearly separated the three groups, hippocampals being characterized by more erratic hyperactivity, and strongly impaired circadian synchronization ability. Hippocampal lesions led to deficits in spatial passive avoidance, as well as in spatial reference and working memory tasks. Impairment was minimal in rewarded preference/reversal schemes, but prominent if behavioral responses required precise circadian timing or included punishment of wrong spatial choices. No differences between sham-operated and prefrontally lesioned subjects in conditioning success were discernible. These results corroborate the view that hippocampal dysfunction spares simple spatial learning tasks but impairs the ability to cope with conflicting task-inherent spatial, temporal or emotional cues. Methodologically, the results show that automated testing and data analysis of socially kept mice is a powerful, efficient and animal-friendly tool for dissecting complex features and behavioral profiles of hippocampal dysfunction characterizing many transgenic or pharmacological mouse models.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 10 Oct 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:Behavior; Circadian; Hippocampus; Home cage; IntelliCage; Prefrontal cortex; Spatial memory; Working memory
Language:English
Date:18 September 2017
Deposited On:10 Oct 2017 14:00
Last Modified:10 Oct 2017 14:00
Publisher:Elsevier
ISSN:0166-4328
Publisher DOI:https://doi.org/10.1016/j.bbr.2017.08.048
PubMed ID:28927717

Download

Download PDF  'Automated dissection of permanent effects of hippocampal or prefrontal lesions on performance at spatial, working memory and circadian timing tasks of C57BL/6 mice in IntelliCage'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)