Header

UZH-Logo

Maintenance Infos

The use of body worn sensors for detecting the vibrations acting on the lower back in alpine ski racing


Spörri, Jörg; Kröll, Josef; Fasel, Benedikt; Aminian, Kamiar; Müller, Erich (2017). The use of body worn sensors for detecting the vibrations acting on the lower back in alpine ski racing. Frontiers in Physiology, 8:522.

Abstract

This study explored the use of body worn sensors to evaluate the vibrations that act on the human body in alpine ski racing from a general and a back overuse injury prevention perspective. In the course of a biomechanical field experiment, six male European Cup-level athletes each performed two runs on a typical giant slalom (GS) and slalom (SL) course, resulting in a total of 192 analyzed turns. Three-dimensional accelerations were measured by six inertial measurement units placed on the right and left shanks, right and left thighs, sacrum, and sternum. Based on these data, power spectral density (PSD; i.e., the signal's power distribution over frequency) was determined for all segments analyzed. Additionally, as a measure expressing the severity of vibration exposure, root-mean-square (RMS) acceleration acting on the lower back was calculated based on the inertial acceleration along the sacrum's longitudinal axis. In both GS and SL skiing, the PSD values of the vibrations acting at the shank were found to be largest for frequencies below 30 Hz. While being transmitted through the body, these vibrations were successively attenuated by the knee and hip joint. At the lower back (i.e., sacrum sensor), PSD values were especially pronounced for frequencies between 4 and 10 Hz, whereas a corresponding comparison between GS and SL revealed higher PSD values and larger RMS values for GS. Because vibrations in this particular range (i.e., 4 to 10 Hz) include the spine's resonant frequency and are known to increase the risk of structural deteriorations/abnormalities of the spine, they may be considered potential components of mechanisms leading to overuse injuries of the back in alpine ski racing. Accordingly, any measure to control and/or reduce such skiing-related vibrations to a minimum should be recognized and applied. In this connection, wearable sensor technologies might help to better monitor and manage the overall back overuse-relevant vibration exposure of athletes in regular training and or competition settings in the near future.

Abstract

This study explored the use of body worn sensors to evaluate the vibrations that act on the human body in alpine ski racing from a general and a back overuse injury prevention perspective. In the course of a biomechanical field experiment, six male European Cup-level athletes each performed two runs on a typical giant slalom (GS) and slalom (SL) course, resulting in a total of 192 analyzed turns. Three-dimensional accelerations were measured by six inertial measurement units placed on the right and left shanks, right and left thighs, sacrum, and sternum. Based on these data, power spectral density (PSD; i.e., the signal's power distribution over frequency) was determined for all segments analyzed. Additionally, as a measure expressing the severity of vibration exposure, root-mean-square (RMS) acceleration acting on the lower back was calculated based on the inertial acceleration along the sacrum's longitudinal axis. In both GS and SL skiing, the PSD values of the vibrations acting at the shank were found to be largest for frequencies below 30 Hz. While being transmitted through the body, these vibrations were successively attenuated by the knee and hip joint. At the lower back (i.e., sacrum sensor), PSD values were especially pronounced for frequencies between 4 and 10 Hz, whereas a corresponding comparison between GS and SL revealed higher PSD values and larger RMS values for GS. Because vibrations in this particular range (i.e., 4 to 10 Hz) include the spine's resonant frequency and are known to increase the risk of structural deteriorations/abnormalities of the spine, they may be considered potential components of mechanisms leading to overuse injuries of the back in alpine ski racing. Accordingly, any measure to control and/or reduce such skiing-related vibrations to a minimum should be recognized and applied. In this connection, wearable sensor technologies might help to better monitor and manage the overall back overuse-relevant vibration exposure of athletes in regular training and or competition settings in the near future.

Statistics

Altmetrics

Downloads

2 downloads since deposited on 10 Oct 2017
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:alpine skiing; athletes; back pain; injury prevention; overuse injuries; spine; training load management; wearable sensors
Language:English
Date:2017
Deposited On:10 Oct 2017 15:08
Last Modified:10 Oct 2017 15:08
Publisher:Frontiers Research Foundation
ISSN:1664-042X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fphys.2017.00522
PubMed ID:28775695

Download

Download PDF  'The use of body worn sensors for detecting the vibrations acting on the lower back in alpine ski racing'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)