Header

UZH-Logo

Maintenance Infos

Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension


Abstract

BACKGROUND: Meaningful translational large animal models for cardiac diseases are indispensable for studying disease mechanisms, development of novel therapeutic strategies, and evaluation of potential drugs.
METHODS: For induction of heart failure, cardiac hypertrophy and fibrosis, a bare metal stent was implanted in the descending aorta of growing pigs (n = 7), inducing pressure stress on the left ventricle (group HYPI). The constant stent size in growing pigs resulted in antegrade partial obstruction of the aortic flow with a gradual increase in afterload. Five pigs with sham intervention served as control. Serial haemodynamic, pressure-volume loop measurements and transthoracic echocardiography (TTE) were performed to detect developing pressure overload of the LV and cardiac MRI with late enhancement for measuring LV and RV mass and ejection fraction.
RESULTS: At 5-month follow-up, CT and contrast aortography, and intraluminal echocardiography confirmed aortic isthmus stenosis with a mean trans-stenotic gradient of 64 ± 13.9 mmHg. Invasive haemodynamic measurements revealed a secondary increase in pulmonary artery pressure (44.6 ± 5.1 vs 25.9 ± 6.2 mmHg, HYPI vs control, p < 0.05). TTE and ex vivo analyses confirmed severe concentric LV hypertrophy (mean circumferential wall thickness, 19.4 ± 3.1, n = 7 vs 11.4 ± 1.0 mm, n = 5, HYPI vs controls, p < 0.05). The LV and RV mass increased significantly, paralleled by increased isovolumic relaxation constant (tau). Histological analyses confirmed substantial fibrosis and myocyte hypertrophy in both LV and RV. Expressions of ANP, BNP, and miRNA-29a were up-regulated, while SERCA2a and miRNA-1 were down-regulated. Plasma NGAL levels increased gradually, while the elevation of NT-proBNP was detected only at the 5-month FUP.
CONCLUSION: These data prove that percutaneous artificial aortic stenosis in pigs is useful for inducing clinically relevant progredient heart failure based on myocardial hypertrophy and fibrosis.

Abstract

BACKGROUND: Meaningful translational large animal models for cardiac diseases are indispensable for studying disease mechanisms, development of novel therapeutic strategies, and evaluation of potential drugs.
METHODS: For induction of heart failure, cardiac hypertrophy and fibrosis, a bare metal stent was implanted in the descending aorta of growing pigs (n = 7), inducing pressure stress on the left ventricle (group HYPI). The constant stent size in growing pigs resulted in antegrade partial obstruction of the aortic flow with a gradual increase in afterload. Five pigs with sham intervention served as control. Serial haemodynamic, pressure-volume loop measurements and transthoracic echocardiography (TTE) were performed to detect developing pressure overload of the LV and cardiac MRI with late enhancement for measuring LV and RV mass and ejection fraction.
RESULTS: At 5-month follow-up, CT and contrast aortography, and intraluminal echocardiography confirmed aortic isthmus stenosis with a mean trans-stenotic gradient of 64 ± 13.9 mmHg. Invasive haemodynamic measurements revealed a secondary increase in pulmonary artery pressure (44.6 ± 5.1 vs 25.9 ± 6.2 mmHg, HYPI vs control, p < 0.05). TTE and ex vivo analyses confirmed severe concentric LV hypertrophy (mean circumferential wall thickness, 19.4 ± 3.1, n = 7 vs 11.4 ± 1.0 mm, n = 5, HYPI vs controls, p < 0.05). The LV and RV mass increased significantly, paralleled by increased isovolumic relaxation constant (tau). Histological analyses confirmed substantial fibrosis and myocyte hypertrophy in both LV and RV. Expressions of ANP, BNP, and miRNA-29a were up-regulated, while SERCA2a and miRNA-1 were down-regulated. Plasma NGAL levels increased gradually, while the elevation of NT-proBNP was detected only at the 5-month FUP.
CONCLUSION: These data prove that percutaneous artificial aortic stenosis in pigs is useful for inducing clinically relevant progredient heart failure based on myocardial hypertrophy and fibrosis.

Statistics

Citations

Altmetrics

Downloads

1 download since deposited on 06 Dec 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:6 October 2017
Deposited On:06 Dec 2017 15:28
Last Modified:19 Feb 2018 09:26
Publisher:BioMed Central
ISSN:1479-5876
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12967-017-1299-0
PubMed ID:28985746

Download

Download PDF  'Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Public Domain Dedication: CC0 1.0 Universal (CC0 1.0)