Header

UZH-Logo

Maintenance Infos

Intravoxel incoherent motion analysis of abdominal organs: application of simultaneous multislice acquisition


Phi van, Valerie Doan; Becker, Anton S; Ciritsis, Alexander; Reiner, Caecilia S; Boss, Andreas (2018). Intravoxel incoherent motion analysis of abdominal organs: application of simultaneous multislice acquisition. Investigative Radiology, 53(3):179-185.

Abstract

PURPOSE: The aim of this study was to systematically evaluate the accuracy of quantitative intravoxel incoherent motion (IVIM) analysis of the upper abdomen applying simultaneous multislice (SMS) diffusion-weighted imaging (DWI) to reduce acquisition time.
MATERIALS AND METHODS: Diffusion-weighted imaging of parenchymal abdominal organs was performed in 8 healthy volunteers at 3 T using a standard DWI sequence (acceleration factor 1 [AF1]) and an SMS-accelerated echo planar imaging sequence with acceleration factors 2 and 3 (AF2/AF3). Intravoxel incoherent motion analysis was performed with a multistep algorithm for true diffusion coefficient (Dt), pseudodiffusion coefficient (D*), and fraction of perfusion (Fp) measured for the liver, kidney cortex and medulla, pancreas, spleen, and erector spinae muscle. Qualitative and quantitative parameters were compared using a repeated measurement 1-way analysis of variance test and the Bonferroni post hoc method.
RESULTS: Simultaneous multislice DWI provided diagnostic image quality in all volunteers with a reduction of scan time of 50% for AF2 (67% for AF3) compared with the standard sequence. Decent IVIM analysis for Dt, D*, and Fp can be calculated on the images of both the SMS sequences AF2 and AF3 with typical organ characteristics of IVIM; however, systematical deviations from AF1 were observed: Dt values increased and Fp decreased significantly with higher acceleration factor for liver, kidney, pancreas, and muscle (P < 0.05). Fitting curves of higher acceleration factors tend to be more monoexponentially shaped.
CONCLUSIONS: Simultaneous multislice acceleration provides considerable scan time reduction for upper abdomen DWI with equivalent quality of IVIM analysis compared with the standard nonaccelerated technique. Systematic discrepancies of the true Dt, D*, and Fp for SMS acquisitions need to be considered when comparing to standard DWI sequences.

Abstract

PURPOSE: The aim of this study was to systematically evaluate the accuracy of quantitative intravoxel incoherent motion (IVIM) analysis of the upper abdomen applying simultaneous multislice (SMS) diffusion-weighted imaging (DWI) to reduce acquisition time.
MATERIALS AND METHODS: Diffusion-weighted imaging of parenchymal abdominal organs was performed in 8 healthy volunteers at 3 T using a standard DWI sequence (acceleration factor 1 [AF1]) and an SMS-accelerated echo planar imaging sequence with acceleration factors 2 and 3 (AF2/AF3). Intravoxel incoherent motion analysis was performed with a multistep algorithm for true diffusion coefficient (Dt), pseudodiffusion coefficient (D*), and fraction of perfusion (Fp) measured for the liver, kidney cortex and medulla, pancreas, spleen, and erector spinae muscle. Qualitative and quantitative parameters were compared using a repeated measurement 1-way analysis of variance test and the Bonferroni post hoc method.
RESULTS: Simultaneous multislice DWI provided diagnostic image quality in all volunteers with a reduction of scan time of 50% for AF2 (67% for AF3) compared with the standard sequence. Decent IVIM analysis for Dt, D*, and Fp can be calculated on the images of both the SMS sequences AF2 and AF3 with typical organ characteristics of IVIM; however, systematical deviations from AF1 were observed: Dt values increased and Fp decreased significantly with higher acceleration factor for liver, kidney, pancreas, and muscle (P < 0.05). Fitting curves of higher acceleration factors tend to be more monoexponentially shaped.
CONCLUSIONS: Simultaneous multislice acceleration provides considerable scan time reduction for upper abdomen DWI with equivalent quality of IVIM analysis compared with the standard nonaccelerated technique. Systematic discrepancies of the true Dt, D*, and Fp for SMS acquisitions need to be considered when comparing to standard DWI sequences.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 30 Nov 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:30 Nov 2017 17:37
Last Modified:20 Feb 2018 08:57
Publisher:Lippincott Williams & Wilkins
ISSN:0020-9996
OA Status:Closed
Publisher DOI:https://doi.org/10.1097/RLI.0000000000000426
PubMed ID:29112516

Download

Content: Published Version
Language: English
Filetype: PDF - Registered users only until 6 November 2018
Size: 512kB
View at publisher
Embargo till: 2018-11-06