Header

UZH-Logo

Maintenance Infos

Rat model of the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure


Schadde, Erik; Hertl, Martin; Breitenstein, Stefan; Beck-Schimmer, Beatrice; Schläpfer, Martin (2017). Rat model of the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure. Journal of Visualized Experiments (Jove), (126):online.

Abstract

Recent clinical data support an aggressive surgical approach to both primary and metastatic liver tumors. For some indications, like colorectal liver metastases, the amount of liver tissue left behind after liver resection has become the main limiting factor of resectability of large or multiple liver tumors. A minimal amount of functional tissue is required to avoid the severe complication of post-hepatectomy liver failure, which has high morbidity and mortality. Inducing liver growth of the prospective remnant prior to resection has become more established in liver surgery, either in the form of portal vein embolization by interventional radiologists or in the form of portal vein ligation several weeks prior to resection. Recently, it was shown that liver regeneration is more extensive and rapid, when the parenchymal transection is added to portal vein ligation in a first stage and then, after only one week of waiting, resection performed in a second stage (Associating Liver Partition and Portal vein ligation for Staged hepatectomy = ALPPS). ALPPS has rapidly become popular across the world, but has been criticized for its high perioperative mortality. The mechanism of accelerated and extensive growth induced by this procedure has not been well understood. Animal models have been developed to explore both the physiological and molecular mechanisms of accelerated liver regeneration in ALPPS. This protocol presents a rat model that allows mechanistic exploration of accelerated regeneration.

Abstract

Recent clinical data support an aggressive surgical approach to both primary and metastatic liver tumors. For some indications, like colorectal liver metastases, the amount of liver tissue left behind after liver resection has become the main limiting factor of resectability of large or multiple liver tumors. A minimal amount of functional tissue is required to avoid the severe complication of post-hepatectomy liver failure, which has high morbidity and mortality. Inducing liver growth of the prospective remnant prior to resection has become more established in liver surgery, either in the form of portal vein embolization by interventional radiologists or in the form of portal vein ligation several weeks prior to resection. Recently, it was shown that liver regeneration is more extensive and rapid, when the parenchymal transection is added to portal vein ligation in a first stage and then, after only one week of waiting, resection performed in a second stage (Associating Liver Partition and Portal vein ligation for Staged hepatectomy = ALPPS). ALPPS has rapidly become popular across the world, but has been criticized for its high perioperative mortality. The mechanism of accelerated and extensive growth induced by this procedure has not been well understood. Animal models have been developed to explore both the physiological and molecular mechanisms of accelerated liver regeneration in ALPPS. This protocol presents a rat model that allows mechanistic exploration of accelerated regeneration.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 07 Dec 2017
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:07 Dec 2017 15:01
Last Modified:07 Dec 2017 15:01
Publisher:Journal of Visualized Experiments
ISSN:1940-087X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3791/55895
Related URLs:https://www.jove.com/video/55895

Download

Content: Published Version
Language: English
Filetype: PDF - Registered users only until 14 August 2019
Size: 1MB
View at publisher
Embargo till: 2019-08-14