Header

UZH-Logo

Maintenance Infos

C-reactive protein in the detection of post-stroke infections: systematic review and individual participant data analysis


Bustamante, Alejandro; Vilar-Bergua, Andrea; Guettier, Sophie; Sánchez-Poblet, Josep; García-Berrocoso, Teresa; Giralt, Dolors; Fluri, Felix; Topakian, Raffi; Worthmann, Hans; Hug, Andreas; Molnar, Tihamer; Waje-Andreassen, Ulrike; Katan, Mira; Smith, Craig J; Montaner, Joan (2017). C-reactive protein in the detection of post-stroke infections: systematic review and individual participant data analysis. Journal of Neurochemistry, 141(2):305-314.

Abstract

We conducted a systematic review and individual participant data meta-analysis to explore the role of C-reactive protein (CRP) in early detection or prediction of post-stroke infections. CRP, an acute-phase reactant binds to the phosphocholine expressed on the surface of dead or dying cells and some bacteria, thereby activating complement and promoting phagocytosis by macrophages. We searched PubMed up to May-2015 for studies measuring CRP in stroke and evaluating post-stroke infections. Individual participants' data were merged into a single database. CRP levels were standardized and divided into quartiles. Factors independently associated with post-stroke infections were determined by logistic regression analysis and the additional predictive value of CRP was assessed by comparing areas under receiver operating characteristic curves and integrated discrimination improvement index. Data from seven studies including 699 patients were obtained. Standardized CRP levels were higher in patients with post-stroke infections beyond 24 h. Standardized CRP levels in the fourth quartile were independently associated with infection in two different logistic regression models, model 1 [stroke severity and dysphagia, odds ratio = 9.70 (3.10-30.41)] and model 2 [age, sex, and stroke severity, odds ratio = 3.21 (1.93-5.32)]. Addition of CRP improved discrimination in both models [integrated discrimination improvement = 9.83% (0.89-18.77) and 5.31% (2.83-7.79), respectively], but accuracy was only improved for model 1 (area under the curve 0.806-0.874, p = 0.036). In this study, CRP was independently associated with development of post-stroke infections, with the optimal time-window for measurement at 24-48 h. However, its additional predictive value is moderate over clinical information. Combination with other biomarkers in a panel seems a promising strategy for future studies.

Abstract

We conducted a systematic review and individual participant data meta-analysis to explore the role of C-reactive protein (CRP) in early detection or prediction of post-stroke infections. CRP, an acute-phase reactant binds to the phosphocholine expressed on the surface of dead or dying cells and some bacteria, thereby activating complement and promoting phagocytosis by macrophages. We searched PubMed up to May-2015 for studies measuring CRP in stroke and evaluating post-stroke infections. Individual participants' data were merged into a single database. CRP levels were standardized and divided into quartiles. Factors independently associated with post-stroke infections were determined by logistic regression analysis and the additional predictive value of CRP was assessed by comparing areas under receiver operating characteristic curves and integrated discrimination improvement index. Data from seven studies including 699 patients were obtained. Standardized CRP levels were higher in patients with post-stroke infections beyond 24 h. Standardized CRP levels in the fourth quartile were independently associated with infection in two different logistic regression models, model 1 [stroke severity and dysphagia, odds ratio = 9.70 (3.10-30.41)] and model 2 [age, sex, and stroke severity, odds ratio = 3.21 (1.93-5.32)]. Addition of CRP improved discrimination in both models [integrated discrimination improvement = 9.83% (0.89-18.77) and 5.31% (2.83-7.79), respectively], but accuracy was only improved for model 1 (area under the curve 0.806-0.874, p = 0.036). In this study, CRP was independently associated with development of post-stroke infections, with the optimal time-window for measurement at 24-48 h. However, its additional predictive value is moderate over clinical information. Combination with other biomarkers in a panel seems a promising strategy for future studies.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
1 citation in Scopus®
2 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 08 Feb 2018
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:April 2017
Deposited On:08 Feb 2018 14:36
Last Modified:19 Feb 2018 09:33
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0022-3042
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/jnc.13973
PubMed ID:28171699

Download