Header

UZH-Logo

Maintenance Infos

A new method for estimating patient body weight using CT dose modulation data


Gascho, Dominic; Ganzoni, Lucia; Kolly, Philippe; Zoelch, Niklaus; Hatch, Gary M; Thali, Michael J; Ruder, Thomas D (2017). A new method for estimating patient body weight using CT dose modulation data. European radiology experimental, 1:23.

Abstract

Background: Body weight (BW) is a relevant metric in emergency care. However, visual/physical methods to estimate BW are unreliable. We have developed a method for estimating BW based on effective mAs (mAseff) from computed tomography (CT) dose modulation.
Methods: The mAseff of CT examinations was correlated with the BW of 329 decedents. Linear regression analysis was used to calculate an equation for BW estimation based on the results of decedents with a postmortem interval (PMI) < 4 days (n = 240). The equation was applied to a validation group of 125 decedents. Pearson correlation and t-test statistics were used.
Results: We found an overall strong correlation between mAseff and BW (r = 0.931); r values ranged from 0.854 for decedents with PMI ≥ 4 days to 0.966 for those with PMI < 4 days; among the latter group, r was 0.974 for females and 0.960 for males and 0.969 in the presence and 0.966 in the absence of metallic implants (all correlations with p values < 0.001). The estimated BW was equal to 3.732 + (0.422 × mAseff) – (3.108 × sex index), where the sex index is 0 for males and 1 for females. The validation group showed a strong correlation (r = 0.969) between measured BW and the predicted BW, without significant differences overall (p = 0.119) as well as in female (p = 0.394) and in male decedents (p = 0.196). No outliers were observed.
Conclusions: CT dose modulation is a rapid and reliable method for BW estimation with potential use in clinical practice, in particular in emergency settings.

Abstract

Background: Body weight (BW) is a relevant metric in emergency care. However, visual/physical methods to estimate BW are unreliable. We have developed a method for estimating BW based on effective mAs (mAseff) from computed tomography (CT) dose modulation.
Methods: The mAseff of CT examinations was correlated with the BW of 329 decedents. Linear regression analysis was used to calculate an equation for BW estimation based on the results of decedents with a postmortem interval (PMI) < 4 days (n = 240). The equation was applied to a validation group of 125 decedents. Pearson correlation and t-test statistics were used.
Results: We found an overall strong correlation between mAseff and BW (r = 0.931); r values ranged from 0.854 for decedents with PMI ≥ 4 days to 0.966 for those with PMI < 4 days; among the latter group, r was 0.974 for females and 0.960 for males and 0.969 in the presence and 0.966 in the absence of metallic implants (all correlations with p values < 0.001). The estimated BW was equal to 3.732 + (0.422 × mAseff) – (3.108 × sex index), where the sex index is 0 for males and 1 for females. The validation group showed a strong correlation (r = 0.969) between measured BW and the predicted BW, without significant differences overall (p = 0.119) as well as in female (p = 0.394) and in male decedents (p = 0.196). No outliers were observed.
Conclusions: CT dose modulation is a rapid and reliable method for BW estimation with potential use in clinical practice, in particular in emergency settings.

Statistics

Altmetrics

Downloads

1 download since deposited on 14 Dec 2017
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Language:English
Date:2017
Deposited On:14 Dec 2017 16:04
Last Modified:14 Dec 2017 16:04
Publisher:SpringerOpen
ISSN:2509-9280
Publisher DOI:https://doi.org/10.1186/s41747-017-0028-z

Download

Download PDF  'A new method for estimating patient body weight using CT dose modulation data'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 485kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)