Header

UZH-Logo

Maintenance Infos

Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development


Lutz, C; Weder, B; Hünerwadel, A; Fagagnini, S; Lang, B; Beerenwinkel, N; Rossel, J B; Rogler, G; Misselwitz, B; Hausmann, M (2017). Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Scientific Reports, 7(1):17678.

Abstract

Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88-/-) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88-/-, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88-/- recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation.

Abstract

Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88-/-) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88-/-, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88-/- recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation.

Statistics

Citations

Altmetrics

Downloads

3 downloads since deposited on 28 Dec 2017
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 December 2017
Deposited On:28 Dec 2017 08:40
Last Modified:19 Feb 2018 09:47
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-017-17755-7
PubMed ID:29247242

Download

Download PDF  'Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)
Download PDF  'Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB