Header

UZH-Logo

Maintenance Infos

Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts


Meinecke, I; Cinski, A; Baier, A; Peters, M A; Dankbar, B; Wille, A; Drynda, A; Mendoza, H; Gay, R E; Hay, R T; Ink, B; Gay, S; Pap, T (2007). Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 104(12):5073-5078.

Abstract

The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs. We also show that the nuclear SUMO-protease SENP1, which is found at lower levels in RA SFs, can revert the apoptosis-inhibiting effects of SUMO-1 by releasing DAXX from PML NBs. Our findings indicate that in RA SFs overexpression of SENP1 can alter the SUMO-1-mediated recruitment of DAXX to PML NBs, thus influencing the proapoptotic effects of DAXX. Accumulation of DAXX in PML NBs by SUMO-1 may, therefore, contribute to the pathogenesis of inflammatory disorders.

Abstract

The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs. We also show that the nuclear SUMO-protease SENP1, which is found at lower levels in RA SFs, can revert the apoptosis-inhibiting effects of SUMO-1 by releasing DAXX from PML NBs. Our findings indicate that in RA SFs overexpression of SENP1 can alter the SUMO-1-mediated recruitment of DAXX to PML NBs, thus influencing the proapoptotic effects of DAXX. Accumulation of DAXX in PML NBs by SUMO-1 may, therefore, contribute to the pathogenesis of inflammatory disorders.

Statistics

Citations

74 citations in Web of Science®
80 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 22 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:March 2007
Deposited On:22 Mar 2009 10:15
Last Modified:06 Dec 2017 18:25
Publisher:National Academy of Sciences
ISSN:0027-8424
Additional Information:Copyright: National Academy of Sciences USA
Publisher DOI:https://doi.org/10.1073/pnas.0608773104
PubMed ID:17360386

Download