Header

UZH-Logo

Maintenance Infos

Influence of vestibular and visual stimulation on split-belt walking


Marques, B; Colombo, G; Müller, R; Dürsteler, M R; Dietz, V; Straumann, D (2007). Influence of vestibular and visual stimulation on split-belt walking. Experimental Brain Research, 183(4):457-463.

Abstract

We investigated the influence of vestibular (caloric ear irrigation) and visual (optokinetic) stimulation on slow and fast split-belt walking. The velocity of one belt was fixed (1.5 or 5.0-6.0 km/h) and subjects (N = 8 for vestibular and N = 6 for visual experiments) were asked to adjust the velocity of the other belt to a level at which they perceived the velocity of both the belts as equal. Throughout all experiments, subjects bimanually held on to the space-fixed handles along the treadmill, which provided haptic information on body orientation. While the optokinetic stimulus (displayed on face-mounted virtual reality goggles) had no effect on belt velocity adjustments compared to control trials, cold-water ear irrigation during slow (but not fast) walking effectively influenced belt velocity adjustments in seven of eight subjects. Only two of these subjects decreased the velocity of the ipsilateral belt, consistent with the ipsilateral turning toward the irrigated ear in the Fukuda stepping test. The other five subjects, however, increased the velocity of the ipsilateral belt. A straight-ahead sense mechanism can explain both decreased and increased velocity adjustments. Subjects decrease or increase ipsilateral belt velocity depending on whether the vestibular stimulus is interpreted as an indicator of the straight-ahead direction (decreased velocity) or as an error signal relative to the straight-ahead direction provided by the haptic input from the space-fixed handles along the treadmill (increased velocity). The missing effect during fast walking corroborates the findings by others that the influence of vestibular tone asymmetry on locomotion decreases at higher gait velocities.

Abstract

We investigated the influence of vestibular (caloric ear irrigation) and visual (optokinetic) stimulation on slow and fast split-belt walking. The velocity of one belt was fixed (1.5 or 5.0-6.0 km/h) and subjects (N = 8 for vestibular and N = 6 for visual experiments) were asked to adjust the velocity of the other belt to a level at which they perceived the velocity of both the belts as equal. Throughout all experiments, subjects bimanually held on to the space-fixed handles along the treadmill, which provided haptic information on body orientation. While the optokinetic stimulus (displayed on face-mounted virtual reality goggles) had no effect on belt velocity adjustments compared to control trials, cold-water ear irrigation during slow (but not fast) walking effectively influenced belt velocity adjustments in seven of eight subjects. Only two of these subjects decreased the velocity of the ipsilateral belt, consistent with the ipsilateral turning toward the irrigated ear in the Fukuda stepping test. The other five subjects, however, increased the velocity of the ipsilateral belt. A straight-ahead sense mechanism can explain both decreased and increased velocity adjustments. Subjects decrease or increase ipsilateral belt velocity depending on whether the vestibular stimulus is interpreted as an indicator of the straight-ahead direction (decreased velocity) or as an error signal relative to the straight-ahead direction provided by the haptic input from the space-fixed handles along the treadmill (increased velocity). The missing effect during fast walking corroborates the findings by others that the influence of vestibular tone asymmetry on locomotion decreases at higher gait velocities.

Statistics

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:December 2007
Deposited On:19 Mar 2009 16:44
Last Modified:05 Apr 2016 13:03
Publisher:Springer
ISSN:0014-4819
Publisher DOI:https://doi.org/10.1007/s00221-007-1063-4
PubMed ID:17665177

Download