Header

UZH-Logo

Maintenance Infos

RhoGEF9 splice isoforms influence neuronal maturation and synapse formation downstream of α2 GABAA receptors


de Groot, Claire; Floriou-Servou, Amalia; Tsai, Yuan-Chen; Früh, Simon; Kohler, Manuela; Parkin, Georgia; Schwerdel, Cornelia; Bosshard, Giovanna; Kaila, Kai; Fritschy, Jean-Marc; Tyagarajan, Shiva K (2017). RhoGEF9 splice isoforms influence neuronal maturation and synapse formation downstream of α2 GABAA receptors. PLoS Genetics, 13(10):e1007073.

Abstract

In developing brain neuronal migration, dendrite outgrowth and dendritic spine outgrowth are controlled by Cdc42, a small GTPase of the Rho family, and its activators. Cdc42 function in promoting actin polymerization is crucial for glutamatergic synapse regulation. Here, we focus on GABAergic synapse-specific activator of Cdc42, collybistin (CB) and examine functional differences between its splice isoforms CB1 and CB2. We report that CB1 and CB2 differentially regulate GABAergic synapse formation in vitro along proximal-distal axis and adult-born neuron maturation in vivo. The functional specialization between CB1 and CB2 isoforms arises from their differential protein half-life, in turn regulated by ubiquitin conjugation of the unique CB1 C-terminus. We report that CB1 and CB2 negatively regulate Cdc42; however, Cdc42 activation is dependent on CB interaction with gephyrin. During hippocampal adult neurogenesis CB1 regulates neuronal migration, while CB2 is essential for dendrite outgrowth. Finally, using mice lacking Gabra2 subunit, we show that CB1 function is downstream of GABAARs, and we can rescue adult neurogenesis deficit observed in Gabra2 KO. Overall, our results uncover previously unexpected role for CB isoforms downstream of α2-containing GABAARs during neuron maturation in a Cdc42 dependent mechanism.

Abstract

In developing brain neuronal migration, dendrite outgrowth and dendritic spine outgrowth are controlled by Cdc42, a small GTPase of the Rho family, and its activators. Cdc42 function in promoting actin polymerization is crucial for glutamatergic synapse regulation. Here, we focus on GABAergic synapse-specific activator of Cdc42, collybistin (CB) and examine functional differences between its splice isoforms CB1 and CB2. We report that CB1 and CB2 differentially regulate GABAergic synapse formation in vitro along proximal-distal axis and adult-born neuron maturation in vivo. The functional specialization between CB1 and CB2 isoforms arises from their differential protein half-life, in turn regulated by ubiquitin conjugation of the unique CB1 C-terminus. We report that CB1 and CB2 negatively regulate Cdc42; however, Cdc42 activation is dependent on CB interaction with gephyrin. During hippocampal adult neurogenesis CB1 regulates neuronal migration, while CB2 is essential for dendrite outgrowth. Finally, using mice lacking Gabra2 subunit, we show that CB1 function is downstream of GABAARs, and we can rescue adult neurogenesis deficit observed in Gabra2 KO. Overall, our results uncover previously unexpected role for CB isoforms downstream of α2-containing GABAARs during neuron maturation in a Cdc42 dependent mechanism.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 11 Jan 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:October 2017
Deposited On:11 Jan 2018 11:20
Last Modified:19 Feb 2018 10:11
Publisher:Public Library of Science (PLoS)
ISSN:1553-7390
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pgen.1007073
PubMed ID:29069083

Download

Download PDF  'RhoGEF9 splice isoforms influence neuronal maturation and synapse formation downstream of α2 GABAA receptors'.
Preview
Content: Published Version
Filetype: PDF
Size: 12MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)