Header

UZH-Logo

Maintenance Infos

Phylogeny-based systematization of arabidopsis proteins with histone H1 globular domain


Kotliński, Maciej; Knizewski, Lukasz; Muszewska, Anna; Rutowicz, Kinga; Lirski, Maciej; Schmidt, Anja; Baroux, Célia; Ginalski, Krzysztof; Jerzmanowski, Andrzej (2017). Phylogeny-based systematization of arabidopsis proteins with histone H1 globular domain. Plant Physiology, 174(1):27-34.

Abstract

H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.

Abstract

H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.

Statistics

Altmetrics

Downloads

1 download since deposited on 10 Jan 2018
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2017
Deposited On:10 Jan 2018 15:12
Last Modified:10 Jan 2018 15:15
Publisher:American Society of Plant Biologists
ISSN:0032-0889
Additional Information:Articles can be viewed without a subscription on publisher´s website.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1104/pp.16.00214
PubMed ID:28298478

Download