Header

UZH-Logo

Maintenance Infos

NKG2D-dependent anti-tumor effects of chemotherapy and radiotherapy against glioblastoma


Weiss, Tobias; Schneider, Hannah; Silginer, Manuela; Steinle, Alexander; Pruschy, Martin N; Polic, Bojan; Weller, Michael; Roth, Patrick (2018). NKG2D-dependent anti-tumor effects of chemotherapy and radiotherapy against glioblastoma. Clinical Cancer Research, 24(4):882-895.

Abstract

PURPOSE NKG2D is a potent activating immune cell receptor and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed. EXPERIMENTAL DESIGN We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models including glioma-initiating cells and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice. RESULTS TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT) and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway. CONCLUSIONS The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR.

Abstract

PURPOSE NKG2D is a potent activating immune cell receptor and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed. EXPERIMENTAL DESIGN We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models including glioma-initiating cells and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice. RESULTS TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT) and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway. CONCLUSIONS The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:11 Jan 2018 15:25
Last Modified:20 Feb 2018 09:01
Publisher:American Association for Cancer Research
ISSN:1078-0432
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1158/1078-0432.CCR-17-1766
PubMed ID:29162646

Download

Full text not available from this repository.
View at publisher