Header

UZH-Logo

Maintenance Infos

Hypocretin/orexin disturbances in neurological disorders


Fronczek, R; Baumann, C R; Lammers, G J; Bassetti, C L; Overeem, S (2009). Hypocretin/orexin disturbances in neurological disorders. Sleep Medicine Reviews, 13(1):9-22.

Abstract

The hypothalamic hypocretin (orexin) system plays a crucial role in the regulation of sleep and wakefulness. The strongest evidence for this is the fact that the primary sleep disorder narcolepsy is caused by disrupted hypocretin signaling in humans as well as various animal models. There is a growing interest in the role of hypocretin defects not only in the pathophysiology of other sleep disorders, but also in neurological diseases with associated sleep symptomatology. In this paper we first review the current methods to measure the integrity of the hypocretin system in human patients. The most widely used technique entails the measurement of hypocretin-1 in lumbar cerebrospinal fluid. In addition, hypocretin levels can be measured in ventricular cerebrospinal fluid and brain tissue extract. Finally, in post-mortem hypothalamic material, the number of hypocretin neurons can be precisely quantified. In the second part of this paper we describe the various neurological disorders in which hypocretin defects have been reported. These include neurodegenerative, neuromuscular and immune-mediated diseases, as well as traumatic brain injury. We conclude with a discussion of the functional relevance of partial hypocretin defects, and the various pathophysiological mechanisms that can lead to such defects.

Abstract

The hypothalamic hypocretin (orexin) system plays a crucial role in the regulation of sleep and wakefulness. The strongest evidence for this is the fact that the primary sleep disorder narcolepsy is caused by disrupted hypocretin signaling in humans as well as various animal models. There is a growing interest in the role of hypocretin defects not only in the pathophysiology of other sleep disorders, but also in neurological diseases with associated sleep symptomatology. In this paper we first review the current methods to measure the integrity of the hypocretin system in human patients. The most widely used technique entails the measurement of hypocretin-1 in lumbar cerebrospinal fluid. In addition, hypocretin levels can be measured in ventricular cerebrospinal fluid and brain tissue extract. Finally, in post-mortem hypothalamic material, the number of hypocretin neurons can be precisely quantified. In the second part of this paper we describe the various neurological disorders in which hypocretin defects have been reported. These include neurodegenerative, neuromuscular and immune-mediated diseases, as well as traumatic brain injury. We conclude with a discussion of the functional relevance of partial hypocretin defects, and the various pathophysiological mechanisms that can lead to such defects.

Statistics

Citations

38 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 21 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:21 Mar 2009 09:32
Last Modified:06 Dec 2017 18:28
Publisher:Elsevier
ISSN:1087-0792
Publisher DOI:https://doi.org/10.1016/j.smrv.2008.05.002
PubMed ID:18819824

Download