Header

UZH-Logo

Maintenance Infos

Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria


Plessl, Tanja; Bürer, Céline; Lutz, Seraina; Yue, Wyatt W; Baumgartner, Matthias R; Froese, D Sean (2017). Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria. Human Mutation, 38(8):988-1001.

Abstract

Mutations in the human MMAA gene cause the metabolic disorder cblA-type methylmalonic aciduria (MMA), although knowledge of the mechanism of dysfunction remains lacking. MMAA regulates the incorporation of the cofactor adenosylcobalamin (AdoCbl), generated from the MMAB adenosyltransferase, into the destination enzyme methylmalonyl-CoA mutase (MUT). This function of MMAA depends on its GTPase activity, which is stimulated by an interaction with MUT. Here, we present 67 new patients with cblA-type MMA, identifying 19 novel mutations. We biochemically investigated how missense mutations in MMAA in 22 patients lead to disease. About a third confer instability to the recombinant protein in bacterial and human expression systems. All 15 purified mutant proteins demonstrated wild-type like intrinsic GTPase activity and only one (p.Asp292Val), where the mutation is in the GTP binding domain, revealed decreased GTP binding. However, all mutations strongly decreased functional association with MUT by reducing GTPase activity stimulation upon incubation with MUT, while nine mutant proteins additionally lost the ability to physically bind MUT. Finally, all mutations interfered with gating the transfer of AdoCbl from MMAB to MUT. This work suggests loss of functional interaction between MMAA and MUT as a disease-causing mechanism that impacts processing and assembly of a cofactor to its destination enzyme.

Abstract

Mutations in the human MMAA gene cause the metabolic disorder cblA-type methylmalonic aciduria (MMA), although knowledge of the mechanism of dysfunction remains lacking. MMAA regulates the incorporation of the cofactor adenosylcobalamin (AdoCbl), generated from the MMAB adenosyltransferase, into the destination enzyme methylmalonyl-CoA mutase (MUT). This function of MMAA depends on its GTPase activity, which is stimulated by an interaction with MUT. Here, we present 67 new patients with cblA-type MMA, identifying 19 novel mutations. We biochemically investigated how missense mutations in MMAA in 22 patients lead to disease. About a third confer instability to the recombinant protein in bacterial and human expression systems. All 15 purified mutant proteins demonstrated wild-type like intrinsic GTPase activity and only one (p.Asp292Val), where the mutation is in the GTP binding domain, revealed decreased GTP binding. However, all mutations strongly decreased functional association with MUT by reducing GTPase activity stimulation upon incubation with MUT, while nine mutant proteins additionally lost the ability to physically bind MUT. Finally, all mutations interfered with gating the transfer of AdoCbl from MMAB to MUT. This work suggests loss of functional interaction between MMAA and MUT as a disease-causing mechanism that impacts processing and assembly of a cofactor to its destination enzyme.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 17 Jan 2018
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2017
Deposited On:17 Jan 2018 14:11
Last Modified:19 Feb 2018 10:31
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1059-7794
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/humu.23251
PubMed ID:28497574

Download