Header

UZH-Logo

Maintenance Infos

Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging


Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu (2017). Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging. Journal of Biomedical Materials Research. Part B, 105(7):1972-1977.

Abstract

OBJECTIVES This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. MATERIAL AND METHODS Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 106 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). RESULTS Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUTZT (936.4 ± 120.9b ) and AUT + MZE (867.2 ± 49.3b ) groups presented significantly higher values (p < 0.05) of flexural strength than those of the control groups (CZT : 716.5 ± 185.7a ; CZE : 779.9 ± 114a ) (Tukey's test). The monoclinic phase percentage (%) was higher for AUTZE (71), AUTZT (66), AUT + MZE (71), and AUT + MZM (66) compared to the C groups (ZE:0; ZT:0). Surface roughness (µm) was higher for AUTZE (0.09), AUTZT (0.08), AUT + MZE (0.09 µm), and AUT + MZT (0.09 µm) than those of other groups. CONCLUSIONS Regardless of the zirconia type, autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017.

Abstract

OBJECTIVES This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. MATERIAL AND METHODS Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 106 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). RESULTS Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUTZT (936.4 ± 120.9b ) and AUT + MZE (867.2 ± 49.3b ) groups presented significantly higher values (p < 0.05) of flexural strength than those of the control groups (CZT : 716.5 ± 185.7a ; CZE : 779.9 ± 114a ) (Tukey's test). The monoclinic phase percentage (%) was higher for AUTZE (71), AUTZT (66), AUT + MZE (71), and AUT + MZM (66) compared to the C groups (ZE:0; ZT:0). Surface roughness (µm) was higher for AUTZE (0.09), AUTZT (0.08), AUT + MZE (0.09 µm), and AUT + MZT (0.09 µm) than those of other groups. CONCLUSIONS Regardless of the zirconia type, autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 19 Jan 2018
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:October 2017
Deposited On:19 Jan 2018 09:30
Last Modified:14 Mar 2018 17:20
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1552-4973
Additional Information:For accepted manuscripts: This is the peer reviewed version of the following article: Mota YA, Cotes C, Carvalho RF, Machado JPB, Leite FPP, Souza ROA, Özcan M. 2017. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging. J Biomed Mater Res Part B 2017:105B:1972–1977., which has been published in final form at doi.org/10.1002/jbm.b.33720. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms).
OA Status:Green
Publisher DOI:https://doi.org/10.1002/jbm.b.33720
PubMed ID:27312806

Download

Download PDF  'Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 175kB
View at publisher