Header

UZH-Logo

Maintenance Infos

Microleakage in class V cavities prepared using conventional method versus Er:YAG laser restored with glass ionomer cement or resin composite


Peker, Sertac; Giray, Figen Eren; Durmus, Basak; Bekiroglu, Nural; Kargül, Betül; Özcan, Mutlu (2017). Microleakage in class V cavities prepared using conventional method versus Er:YAG laser restored with glass ionomer cement or resin composite. Journal of Adhesion Science and Technology, 31(5):509-519.

Abstract

This study evaluated the effect of tooth preparation method (diamond bur vs. Er:YAG laser) on the microleakage levels of glass ionomers and resin composite. Human permanent premolars (N = 80) were randomly divided into two groups (n = 40). Cavities on half of the teeth were prepared using diamond bur for enamel and carbide bur for dentin and the other half using Er:YAG laser. The teeth were randomly divided into four groups according to the restoration materials, namely (a) ChemFil Rock (CFR), (b) IonoluxAC (IAC), (c) EQUIA system (EQA) and one resin composite (d) AeliteLS (ALS) (n = 10 per group). Microleakage (μm) was assessed at the occlusal and gingival margins after dye penetration (0.5% basic fuchsine for 24 h). On the occlusal aspect, while the cavity preparation types significantly affected the microleakage for CFR (p = 0.015), IAC (p = 0.001) glass ionomer restorations, it did not show significant effect for glass ionomer EQA (p = 0.09) and resin composite ALS (p = 0.2). Er:YAG laser presented less microleakage compared to bur preparation in all groups except for EQA. On the gingival aspect, microleakage decreased significantly for CFR (p = 0.02), IAC (p = 0.001), except for EQA where significant increase was observed (p = 0.001) with the use of Er:YAG laser. Microleakage decrease was not significant at the gingival region between diamond bur and Er:YAG laser for ALS (p = 0.663). At the occlusal and gingival sites in all groups within each preparation method, microleakage level was not significant.

Abstract

This study evaluated the effect of tooth preparation method (diamond bur vs. Er:YAG laser) on the microleakage levels of glass ionomers and resin composite. Human permanent premolars (N = 80) were randomly divided into two groups (n = 40). Cavities on half of the teeth were prepared using diamond bur for enamel and carbide bur for dentin and the other half using Er:YAG laser. The teeth were randomly divided into four groups according to the restoration materials, namely (a) ChemFil Rock (CFR), (b) IonoluxAC (IAC), (c) EQUIA system (EQA) and one resin composite (d) AeliteLS (ALS) (n = 10 per group). Microleakage (μm) was assessed at the occlusal and gingival margins after dye penetration (0.5% basic fuchsine for 24 h). On the occlusal aspect, while the cavity preparation types significantly affected the microleakage for CFR (p = 0.015), IAC (p = 0.001) glass ionomer restorations, it did not show significant effect for glass ionomer EQA (p = 0.09) and resin composite ALS (p = 0.2). Er:YAG laser presented less microleakage compared to bur preparation in all groups except for EQA. On the gingival aspect, microleakage decreased significantly for CFR (p = 0.02), IAC (p = 0.001), except for EQA where significant increase was observed (p = 0.001) with the use of Er:YAG laser. Microleakage decrease was not significant at the gingival region between diamond bur and Er:YAG laser for ALS (p = 0.663). At the occlusal and gingival sites in all groups within each preparation method, microleakage level was not significant.

Statistics

Citations

Altmetrics

Downloads

5 downloads since deposited on 01 Feb 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:01 Feb 2018 15:00
Last Modified:14 Mar 2018 17:30
Publisher:Taylor & Francis
ISSN:0169-4243
Additional Information:This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Adhesion Science and Technology on 09.08.2016, available online: http://wwww.tandfonline.com/10.1080/01694243.2016.1220471.
OA Status:Green
Publisher DOI:https://doi.org/10.1080/01694243.2016.1220471

Download