Header

UZH-Logo

Maintenance Infos

Automated determination of bone age from hand X-rays at the end of puberty and its applicability for age estimation


Thodberg, Hans Henrik; van Rijn, Rick R; Jenni, Oskar G; Martin, David D (2017). Automated determination of bone age from hand X-rays at the end of puberty and its applicability for age estimation. International journal of legal medicine, 131(3):771-780.

Abstract

The BoneXpert method for automated determination of bone age from hand X-rays was introduced in 2009, covering the Greulich-Pyle bone age ranges up to 17 years for boys and 15 years for girls. This paper presents an extension of the method up to bone age 19 years for boys and 18 years for girls. The extension was developed based on images from the First Zurich Longitudinal Study of 231 healthy children born in 1954-1956 and followed with annual X-rays of both hands until adulthood. The method was validated on two cross-sectional studies of healthy children from Rotterdam and Los Angeles. We found root mean square deviations from manual rating of 0.69 and 0.45 years in these two studies for boys in the bone age range 17-19 years. For girls, the deviations were 0.75 and 0.59 years, respectively, in the bone age range 15-18 years. It is shown how the automated bone age method can be applied to infer the age probability distribution for healthy Caucasian European males. Considering a population with age 15.0-21.0 years, the method can be used to decide whether the subject is above 18 years with a false positive rate (children classified as adults) of 10 % (95% confidence interval = 7-13%) and a false negative rate of 30 % (adults classified as children). To apply this method in other ethnicities will require a study of the average of "bone age - age" at the end of puberty, i.e. how much this population is shifted relative to the Greulich-Pyle standard.

Abstract

The BoneXpert method for automated determination of bone age from hand X-rays was introduced in 2009, covering the Greulich-Pyle bone age ranges up to 17 years for boys and 15 years for girls. This paper presents an extension of the method up to bone age 19 years for boys and 18 years for girls. The extension was developed based on images from the First Zurich Longitudinal Study of 231 healthy children born in 1954-1956 and followed with annual X-rays of both hands until adulthood. The method was validated on two cross-sectional studies of healthy children from Rotterdam and Los Angeles. We found root mean square deviations from manual rating of 0.69 and 0.45 years in these two studies for boys in the bone age range 17-19 years. For girls, the deviations were 0.75 and 0.59 years, respectively, in the bone age range 15-18 years. It is shown how the automated bone age method can be applied to infer the age probability distribution for healthy Caucasian European males. Considering a population with age 15.0-21.0 years, the method can be used to decide whether the subject is above 18 years with a false positive rate (children classified as adults) of 10 % (95% confidence interval = 7-13%) and a false negative rate of 30 % (adults classified as children). To apply this method in other ethnicities will require a study of the average of "bone age - age" at the end of puberty, i.e. how much this population is shifted relative to the Greulich-Pyle standard.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2017
Deposited On:16 Feb 2018 19:44
Last Modified:19 Feb 2018 11:16
Publisher:Springer
ISSN:0937-9827
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00414-016-1471-8
PubMed ID:27757577

Download

Full text not available from this repository.
View at publisher