Header

UZH-Logo

Maintenance Infos

Learning Temporal Intervals in Neural Dynamics


Duran, Boris; Sandamirskaya, Yulia (2017). Learning Temporal Intervals in Neural Dynamics. IEEE Transactions on Cognitive and Developmental Systems, PP(99):n/a.

Abstract

Storing and reproducing temporal intervals is an important component of perception, action generation, and learning. How temporal intervals can be represented in neuronal networks is thus an important research question both in study of biological organisms and artificial neuromorphic systems. Here, we introduce a neural-dynamic computing architecture for learning temporal durations of actions. The architecture uses a Dynamic Neural Fields (DNFs) representation of the elapsed time and a memory trace dynamics to store the experienced action duration. Interconnected dynamical nodes signal beginning of an action, its successful accomplishment, or failure, and activate formation of the memory trace that corresponds to the action’s duration. The accumulated memory trace influences the competition between the dynamical nodes in such a way that the failure node gains a competitive advantage earlier if the stored duration is shorter. The model uses neurally-based DNF dynamics and is a process model of how temporal durations may be stored in neural systems, both biological and artificial ones. The focus of this paper is on the mechanism to store and use duration in artificial neuronal systems. The model is validated in closed-loop experiments with a simulated robot.

Abstract

Storing and reproducing temporal intervals is an important component of perception, action generation, and learning. How temporal intervals can be represented in neuronal networks is thus an important research question both in study of biological organisms and artificial neuromorphic systems. Here, we introduce a neural-dynamic computing architecture for learning temporal durations of actions. The architecture uses a Dynamic Neural Fields (DNFs) representation of the elapsed time and a memory trace dynamics to store the experienced action duration. Interconnected dynamical nodes signal beginning of an action, its successful accomplishment, or failure, and activate formation of the memory trace that corresponds to the action’s duration. The accumulated memory trace influences the competition between the dynamical nodes in such a way that the failure node gains a competitive advantage earlier if the stored duration is shorter. The model uses neurally-based DNF dynamics and is a process model of how temporal durations may be stored in neural systems, both biological and artificial ones. The focus of this paper is on the mechanism to store and use duration in artificial neuronal systems. The model is validated in closed-loop experiments with a simulated robot.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2017
Deposited On:01 Mar 2018 13:24
Last Modified:14 Mar 2018 18:00
Publisher:IEEE Transactions on Cognitive and Developmental Systems
Series Name:IEEE Transactions on Cognitive and Developmental Systems
Number of Pages:14
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/TCDS.2017.2676839

Download

Full text not available from this repository.
View at publisher