Header

UZH-Logo

Maintenance Infos

Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa


Kellenberger, Roman T; Desurmont, Gaylord A; Schlüter, Philipp M; Schiestl, Florian P (2018). Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Scientific Reports, 8:3536.

Abstract

Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes.

Abstract

Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes.

Statistics

Citations

Altmetrics

Downloads

4 downloads since deposited on 15 Feb 2018
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2018
Deposited On:15 Feb 2018 14:08
Last Modified:01 Apr 2018 01:23
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-018-21880-2
PubMed ID:29476119

Download

Download PDF  'Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)