Header

UZH-Logo

Maintenance Infos

Prediction of small for size syndrome after extended hepatectomy: Tissue characterization by relaxometry, diffusion weighted magnetic resonance imaging and magnetization transfer


Eberhardt, Christian; Wurnig, Moritz C; Wirsching, Andrea; Rossi, Cristina; Feldmane, Idana; Lesurtel, Mickael; Boss, Andreas (2018). Prediction of small for size syndrome after extended hepatectomy: Tissue characterization by relaxometry, diffusion weighted magnetic resonance imaging and magnetization transfer. PLoS ONE, 13(2):e0192847.

Abstract

This study aimed to monitor the course of liver regeneration by multiparametric magnetic-resonance imaging (MRI) after partial liver resection characterizing Small-for-Size Syndrome (SFSS), which frequently leads to fatal post-hepatectomy liver failure (PLF). Twenty-two C57BL/6 mice underwent either conventional 70% partial hepatectomy (cPH), extended 86% partial hepatectomy (ePH) or SHAM operation. Subsequent MRI scans on days 0, 1, 2, 3, 5 and 7 in a 4.7T MR Scanner quantified longitudinal and transverse relaxation times, apparent diffusion coefficient (ADC) and the magnetization-transfer ratio (MTR) of the regenerating liver parenchyma. Histological examination was performed by hematoxylin-eosin staining. After hepatectomy, an increase of T1 time was detected being larger for ePH on day 1: 18% for cPH vs. 40% for ePH and on day 2: 24% for cPH vs. 49% for ePH. An increase in T2 time, again greater in ePH was most pronounced on day 5: 21% for cPH vs. 41% for ePH. ADC and MTR showed a decrease on day 1: 21% for ePH vs. 13% for cPH for ADC, 15% for ePH vs. 11% for cPH for MTR. Subsequently, all MR parameters converged towards initial values in surviving animals. Dying PLF animals exhibited the strongest increase of T1 relaxation time and most prominent decreases of ADC and MTR. The retrieved MRI biomarkers indicate SFSS and potentially developing PLF at an early stage, likely reflecting cellular hypertrophy with extended water content and concomitantly diluted cellular components as features of liver regeneration, appearing more intense in ePH as compared to cPH.

Abstract

This study aimed to monitor the course of liver regeneration by multiparametric magnetic-resonance imaging (MRI) after partial liver resection characterizing Small-for-Size Syndrome (SFSS), which frequently leads to fatal post-hepatectomy liver failure (PLF). Twenty-two C57BL/6 mice underwent either conventional 70% partial hepatectomy (cPH), extended 86% partial hepatectomy (ePH) or SHAM operation. Subsequent MRI scans on days 0, 1, 2, 3, 5 and 7 in a 4.7T MR Scanner quantified longitudinal and transverse relaxation times, apparent diffusion coefficient (ADC) and the magnetization-transfer ratio (MTR) of the regenerating liver parenchyma. Histological examination was performed by hematoxylin-eosin staining. After hepatectomy, an increase of T1 time was detected being larger for ePH on day 1: 18% for cPH vs. 40% for ePH and on day 2: 24% for cPH vs. 49% for ePH. An increase in T2 time, again greater in ePH was most pronounced on day 5: 21% for cPH vs. 41% for ePH. ADC and MTR showed a decrease on day 1: 21% for ePH vs. 13% for cPH for ADC, 15% for ePH vs. 11% for cPH for MTR. Subsequently, all MR parameters converged towards initial values in surviving animals. Dying PLF animals exhibited the strongest increase of T1 relaxation time and most prominent decreases of ADC and MTR. The retrieved MRI biomarkers indicate SFSS and potentially developing PLF at an early stage, likely reflecting cellular hypertrophy with extended water content and concomitantly diluted cellular components as features of liver regeneration, appearing more intense in ePH as compared to cPH.

Statistics

Citations

Altmetrics

Downloads

5 downloads since deposited on 08 Mar 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:08 Mar 2018 12:26
Last Modified:01 Apr 2018 01:23
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0192847
PubMed ID:29444146

Download

Download PDF  'Prediction of small for size syndrome after extended hepatectomy: Tissue characterization by relaxometry, diffusion weighted magnetic resonance imaging and magnetization transfer'.
Preview
Content: Published Version
Filetype: PDF
Size: 15MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)