Header

UZH-Logo

Maintenance Infos

Factors controlling decomposition rates of fine root litter in temperate forests and grasslands


Solly, Emily F; Schöning, Ingo; Boch, Steffen; Kandeler, Ellen; Marhan, Sven; Michalzik, Beate; Müller, Jörg; Zscheischler, Jakob; Trumbore, Susan E; Schrumpf, Marion (2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 382(1-2):203-218.

Abstract

Background and aims: Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties.
Methods: In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmen-tal factors.
Results: Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12±4 %; p<0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests.
Conclusions: Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.

Abstract

Background and aims: Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties.
Methods: In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmen-tal factors.
Results: Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12±4 %; p<0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests.
Conclusions: Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.

Statistics

Citations

Dimensions.ai Metrics
44 citations in Web of Science®
48 citations in Scopus®
59 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 22 Mar 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Plant Science, Soil Science
Language:English
Date:2014
Deposited On:22 Mar 2018 12:37
Last Modified:19 Aug 2018 15:14
Publisher:Springer
ISSN:0032-079X
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s11104-014-2151-4

Download