Header

UZH-Logo

Maintenance Infos

Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures.


Mori, M; Heuss, C; Gähwiler, B H; Gerber, U (2001). Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. Journal of Physiology, 535(1):115-123.

Abstract

1. A fast ATP-mediated synaptic current was identified in CA3 pyramidal cells in organotypic hippocampal slice cultures. In the presence of inhibitors for ionotropic glutamate and GABA receptors, extracellular stimulation in the pyramidal cell layer evoked fast synaptic currents that reversed near 0 mV, reflecting an increase in a non-selective cationic conductance. This response was mimicked by focal application of ATP. Antagonists of ionotropic P2X receptors reduced both synaptic and ATP-induced currents. 2. Using a pharmacological approach, the source of synaptically released ATP was determined. Synaptic ATP responses were insensitive to presynaptic blockade of GABAergic transmission between interneurons and CA3 pyramidal cells with the mu-opioid receptor agonist D-Ala(2),MePhe(4),Met(O)(5)-ol-enkephalin (FK33-824), but were blocked by adenosine, which inhibits glutamate release from synaptic terminals in the hippocampus. However, selective inhibition of mossy fibre glutamatergic transmission with the metabotropic glutamate receptor group II agonist(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) did not affect the response. This result points to the associational fibres as the source of the ATP-mediated synaptic response. 3. These results suggest that ATP, coreleased with glutamate, induces a synaptic response in CA3 pyramidal cells that is observed mainly under conditions of synchronous discharge from multiple presynaptic inputs.

Abstract

1. A fast ATP-mediated synaptic current was identified in CA3 pyramidal cells in organotypic hippocampal slice cultures. In the presence of inhibitors for ionotropic glutamate and GABA receptors, extracellular stimulation in the pyramidal cell layer evoked fast synaptic currents that reversed near 0 mV, reflecting an increase in a non-selective cationic conductance. This response was mimicked by focal application of ATP. Antagonists of ionotropic P2X receptors reduced both synaptic and ATP-induced currents. 2. Using a pharmacological approach, the source of synaptically released ATP was determined. Synaptic ATP responses were insensitive to presynaptic blockade of GABAergic transmission between interneurons and CA3 pyramidal cells with the mu-opioid receptor agonist D-Ala(2),MePhe(4),Met(O)(5)-ol-enkephalin (FK33-824), but were blocked by adenosine, which inhibits glutamate release from synaptic terminals in the hippocampus. However, selective inhibition of mossy fibre glutamatergic transmission with the metabotropic glutamate receptor group II agonist(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) did not affect the response. This result points to the associational fibres as the source of the ATP-mediated synaptic response. 3. These results suggest that ATP, coreleased with glutamate, induces a synaptic response in CA3 pyramidal cells that is observed mainly under conditions of synchronous discharge from multiple presynaptic inputs.

Statistics

Citations

106 citations in Web of Science®
110 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2001
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:12
Publisher:Wiley-Blackwell
ISSN:0022-3751
Publisher DOI:https://doi.org/10.1111/j.1469-7793.2001.t01-1-00115.x
Related URLs:http://jp.physoc.org/cgi/content/full/535/1/115
PubMed ID:11507162

Download

Full text not available from this repository.
View at publisher