Header

UZH-Logo

Maintenance Infos

The effect of irradiation and hyperbaric oxygenation (HBO) on extracellular matrix of the condylar cartilage after mandibular distraction osteogenesis in the rabbit.


Muhonen, A; Säämänen, A M; Peltomäki, T; Happonen, R P (2006). The effect of irradiation and hyperbaric oxygenation (HBO) on extracellular matrix of the condylar cartilage after mandibular distraction osteogenesis in the rabbit. International Journal of Oral and Maxillofacial Surgery, 35(1):79-87.

Abstract

The effects of irradiation and hyperbaric oxygenation (HBO) on the extracellular matrix of condylar cartilage after mandibular distraction were evaluated. Unilateral distraction was performed on 19 rabbits. Five study groups were included: control, low- and high-dose irradiation, and low- and high-dose irradiation groups with HBO. Additionally, four temporomandibular joints (TMJ) were used as control material. The high-dose irradiated animals were given in the TMJ 22.4 Gy/4 fractions irradiation (equivalent to 50 Gy/25 fractions). Low-dose irradiation group received a 2.2 Gy dosage. Two groups were also given preoperatively HBO 18 x 2.5ATA x 90 min. After a two-week distraction period (14 mm lengthening) and four-week consolidation period the TMJs were removed. Proteoglycan (PG) distribution of the extracellular matrix was evaluated using safranin O staining and collagen I and II using immunohistochemistry. The organization of fibrillar network was studied by polarized light microscopy. On the operated side of the control group and on the unoperated side in all, except for high-dose irradiated group, PG distribution and fibrillar network were normal appearing. In the irradiated groups, with or without HBO, the cartilaginous layer was partially or totally devoid of PG and the network structure was severely damaged. In conclusion, irradiation in conjunction with the pressure applied by distraction causes severe damage to extracellular matrix of condylar cartilage.

Abstract

The effects of irradiation and hyperbaric oxygenation (HBO) on the extracellular matrix of condylar cartilage after mandibular distraction were evaluated. Unilateral distraction was performed on 19 rabbits. Five study groups were included: control, low- and high-dose irradiation, and low- and high-dose irradiation groups with HBO. Additionally, four temporomandibular joints (TMJ) were used as control material. The high-dose irradiated animals were given in the TMJ 22.4 Gy/4 fractions irradiation (equivalent to 50 Gy/25 fractions). Low-dose irradiation group received a 2.2 Gy dosage. Two groups were also given preoperatively HBO 18 x 2.5ATA x 90 min. After a two-week distraction period (14 mm lengthening) and four-week consolidation period the TMJs were removed. Proteoglycan (PG) distribution of the extracellular matrix was evaluated using safranin O staining and collagen I and II using immunohistochemistry. The organization of fibrillar network was studied by polarized light microscopy. On the operated side of the control group and on the unoperated side in all, except for high-dose irradiated group, PG distribution and fibrillar network were normal appearing. In the irradiated groups, with or without HBO, the cartilaginous layer was partially or totally devoid of PG and the network structure was severely damaged. In conclusion, irradiation in conjunction with the pressure applied by distraction causes severe damage to extracellular matrix of condylar cartilage.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Orthodontics and Pediatric Dentistry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 2006
Deposited On:11 Feb 2008 12:24
Last Modified:06 Dec 2017 13:24
Publisher:Elsevier
ISSN:0901-5027
Publisher DOI:https://doi.org/10.1016/j.ijom.2005.06.016
PubMed ID:16188425

Download

Full text not available from this repository.
View at publisher