Header

UZH-Logo

Maintenance Infos

Reduced cerebral blood flow but elevated cerebral glucose metabolic rate in erythropoietin overexpressing transgenic mice with excessive erythrocytosis


Frietsch, T; Maurer, M H; Vogel, J; Gassmann, M; Kuschinsky, W; Waschke, K F (2007). Reduced cerebral blood flow but elevated cerebral glucose metabolic rate in erythropoietin overexpressing transgenic mice with excessive erythrocytosis. Journal of Cerebral Blood Flow and Metabolism, 27(3):469-476.

Abstract

To examine the impact of excessive erythrocytosis on local cerebral blood flow (CBF) and cerebral glucose metabolic rate (CMR(glc)), we made use of our constitutively erythropoietin (Epo)-overexpressing transgenic mouse line (tg-6) that reach a mean hematocrit of 0.87. Compared with wild-type (wt) control siblings, CBF decreased by 44% in tg-6 mice, while upon hemodilution (tg-6-HD) to a physiologic hematocrit (e.g., 0.44) tg-6-HD mice returned the CBF to wt levels. Cerebral blood flow was determined in another transgenic mouse line that overexpresses human Epo in the brain only (tg-21): CBF increased by 17% compared with wt controls. However, oxygen delivery was similar in all four mouse groups tested (wt, tg-6, tg-6-HD and tg-21). Mean CMR(glc) was higher in tg-6 (+72%), tg-6-HD mice (+43%) and tg-21 (+22%) than in wt mice. Local CMR(glc) was higher in all 40 brain regions in tg-6 but only in 15 and 8 regions in tg-6-HD and tg-21 mice. These results show that prolonged increases in hematocrit did not alter cerebral oxygen delivery at a decreased CBF and increased CMR(glc). Hemodilution suggests that high blood viscosity is a cause of the decrease in CBF and partly of the increase in CMR(glc). Cerebral glucose metabolic rate may also be increased by a direct effect of Epo in the brain (tg-21 mice).

Abstract

To examine the impact of excessive erythrocytosis on local cerebral blood flow (CBF) and cerebral glucose metabolic rate (CMR(glc)), we made use of our constitutively erythropoietin (Epo)-overexpressing transgenic mouse line (tg-6) that reach a mean hematocrit of 0.87. Compared with wild-type (wt) control siblings, CBF decreased by 44% in tg-6 mice, while upon hemodilution (tg-6-HD) to a physiologic hematocrit (e.g., 0.44) tg-6-HD mice returned the CBF to wt levels. Cerebral blood flow was determined in another transgenic mouse line that overexpresses human Epo in the brain only (tg-21): CBF increased by 17% compared with wt controls. However, oxygen delivery was similar in all four mouse groups tested (wt, tg-6, tg-6-HD and tg-21). Mean CMR(glc) was higher in tg-6 (+72%), tg-6-HD mice (+43%) and tg-21 (+22%) than in wt mice. Local CMR(glc) was higher in all 40 brain regions in tg-6 but only in 15 and 8 regions in tg-6-HD and tg-21 mice. These results show that prolonged increases in hematocrit did not alter cerebral oxygen delivery at a decreased CBF and increased CMR(glc). Hemodilution suggests that high blood viscosity is a cause of the decrease in CBF and partly of the increase in CMR(glc). Cerebral glucose metabolic rate may also be increased by a direct effect of Epo in the brain (tg-21 mice).

Statistics

Citations

28 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 22 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:March 2007
Deposited On:22 Mar 2009 10:23
Last Modified:05 Apr 2016 13:05
Publisher:Nature Publishing Group
ISSN:0271-678X
Publisher DOI:https://doi.org/10.1038/sj.jcbfm.9600360
Official URL:http://www.nature.com/jcbfm/journal/v27/n3/pdf/9600360a.pdf
PubMed ID:16804549

Download