Header

UZH-Logo

Maintenance Infos

TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway


Lalive, P H; Paglinawan, R; Biollaz, G; Kappos, E A; Leone, D P; Malipiero, U; Relvas, J B; Moransard, M; Suter, T; Fontana, A (2005). TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. European Journal of Immunology, 35(3):727-737.

Abstract

In acute experimental autoimmune encephalomyelitis (EAE), demyelination is induced by myelin-specific CD4(+) T lymphocytes and myelin-specific antibodies. Recovery from the disease is initiated by cytokines which suppress T cell expansion and the production of myelin-toxic molecules by macrophages. Th2/3 cell-derived signals may also be involved in central nervous system (CNS) repair. Remyelination is thought to be initiated by the recruitment and differentiation of oligodendrocyte precursor cells (OPC) in demyelinated CNS lesions. Here, we report that unlike Th1 cytokines (TNF-alpha, IFN-gamma), the Th2/3 cytokine TGF-beta induces primary microglia from C57BL/6 mice to secrete a chemotactic factor for primary OPC. We identified this factor to be the hepatocyte growth factor (HGF). Our studies show that TGF-beta-1-2-3 as well as IFN-beta induce HGF secretion by microglia and that antibodies to the HGF receptor c-Met abrogate OPC chemotaxis induced by TGF-beta2-treated microglia. In addition we show spinal cord lesions in EAE induced in SJL/J mice to contain both OPC and HGF producing macrophages in the recovery phase, but not in the acute stage of disease. Taken these findings, TGF-beta may play a pivotal role in remyelination by inducing microglia to release HGF which is both a chemotactic and differentiation factor for OPC.

Abstract

In acute experimental autoimmune encephalomyelitis (EAE), demyelination is induced by myelin-specific CD4(+) T lymphocytes and myelin-specific antibodies. Recovery from the disease is initiated by cytokines which suppress T cell expansion and the production of myelin-toxic molecules by macrophages. Th2/3 cell-derived signals may also be involved in central nervous system (CNS) repair. Remyelination is thought to be initiated by the recruitment and differentiation of oligodendrocyte precursor cells (OPC) in demyelinated CNS lesions. Here, we report that unlike Th1 cytokines (TNF-alpha, IFN-gamma), the Th2/3 cytokine TGF-beta induces primary microglia from C57BL/6 mice to secrete a chemotactic factor for primary OPC. We identified this factor to be the hepatocyte growth factor (HGF). Our studies show that TGF-beta-1-2-3 as well as IFN-beta induce HGF secretion by microglia and that antibodies to the HGF receptor c-Met abrogate OPC chemotaxis induced by TGF-beta2-treated microglia. In addition we show spinal cord lesions in EAE induced in SJL/J mice to contain both OPC and HGF producing macrophages in the recovery phase, but not in the acute stage of disease. Taken these findings, TGF-beta may play a pivotal role in remyelination by inducing microglia to release HGF which is both a chemotactic and differentiation factor for OPC.

Statistics

Citations

61 citations in Web of Science®
62 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 30 Mar 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2005
Deposited On:30 Mar 2009 08:12
Last Modified:21 Nov 2017 14:03
Publisher:Wiley-Blackwell
ISSN:0014-2980
Publisher DOI:https://doi.org/10.1002/eji.200425430
PubMed ID:15724248

Download