Header

UZH-Logo

Maintenance Infos

Mass transport of macromolecules within an in vitro model of supragingival plaque.


Thurnheer, T; Gmür, R; Shapiro, S; Guggenheim, B (2003). Mass transport of macromolecules within an in vitro model of supragingival plaque. Applied and Environmental Microbiology, 69(3):1702-1709.

Abstract

The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.

Abstract

The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.

Statistics

Citations

82 citations in Web of Science®
83 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

115 downloads since deposited on 11 Feb 2008
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 March 2003
Deposited On:11 Feb 2008 12:24
Last Modified:21 Nov 2017 13:24
Publisher:American Society for Microbiology (ASM)
ISSN:0099-2240
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/AEM.69.3.1702-1709.2003
PubMed ID:12620862

Download

Download PDF  'Mass transport of macromolecules within an in vitro model of supragingival plaque.'.
Preview
Filetype: PDF
Size: 2MB
View at publisher