Header

UZH-Logo

Maintenance Infos

Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars


Bansal, U K; Bossolini, E; Miah, H; Keller, B; Park, R F; Bariana, H S (2008). Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica, 164(3):821-828.

Abstract

A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.

Abstract

A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.

Statistics

Citations

17 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 02 Mar 2009
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:December 2008
Deposited On:02 Mar 2009 18:41
Last Modified:05 Apr 2016 13:08
Publisher:Springer
ISSN:0014-2336
Publisher DOI:https://doi.org/10.1007/s10681-008-9736-z

Download

Preview Icon on Download
Filetype: PDF (Publiziertes PDF) - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations