Header

UZH-Logo

Maintenance Infos

Global wellposedness of KdV in H−1(T,R)


Kappeler, T; Topalov, P (2006). Global wellposedness of KdV in H−1(T,R). Duke Mathematical Journal, 135(2):327-360.

Abstract

By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.

Abstract

By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.

Statistics

Citations

Dimensions.ai Metrics
82 citations in Web of Science®
75 citations in Scopus®
149 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2006
Deposited On:10 Apr 2009 08:38
Last Modified:19 Feb 2018 06:47
Publisher:Duke University Press
ISSN:0012-7094
OA Status:Closed
Publisher DOI:https://doi.org/10.1215/S0012-7094-06-13524-X
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2267286

Download

Full text not available from this repository.
View at publisher

Get full-text in a library