Header

UZH-Logo

Maintenance Infos

Option pricing with model-guided nonparametric methods


Mancini, Loriano; Fan, Jianqing (2009). Option pricing with model-guided nonparametric methods. Journal of the American Statistical Association, 104(488):1351-1372.

Abstract

Parametric option pricing models are widely used in finance. These models capture several features of asset price dynamics; however, their pricing performance can be significantly enhanced when they are combined with nonparametric learning approaches that learn and correct empirically the pricing errors. In this article we propose a new nonparametric method for pricing derivatives assets. Our method relies on the state price distribution instead of the state price density, because the former is easier to estimate nonparametrically than the latter. A parametric model is used as an initial estimate of the state price distribution. Then the pricing errors induced by the parametric model are fitted nonparametrically. This model-guided method, called automatic correction of errors (ACE), estimates the state price distribution nonparametrically. The method is easy to implement and can be combined with any model-based pricing formula to correct the systematic biases of pricing errors. We also develop a nonparametric test based on the generalized likelihood ratio to document the efficacy of the ACE method. Empirical studies based on S&P 500 index options show that our method outperforms several competing pricing models in terms of predictive and hedging abilities.

Abstract

Parametric option pricing models are widely used in finance. These models capture several features of asset price dynamics; however, their pricing performance can be significantly enhanced when they are combined with nonparametric learning approaches that learn and correct empirically the pricing errors. In this article we propose a new nonparametric method for pricing derivatives assets. Our method relies on the state price distribution instead of the state price density, because the former is easier to estimate nonparametrically than the latter. A parametric model is used as an initial estimate of the state price distribution. Then the pricing errors induced by the parametric model are fitted nonparametrically. This model-guided method, called automatic correction of errors (ACE), estimates the state price distribution nonparametrically. The method is easy to implement and can be combined with any model-based pricing formula to correct the systematic biases of pricing errors. We also develop a nonparametric test based on the generalized likelihood ratio to document the efficacy of the ACE method. Empirical studies based on S&P 500 index options show that our method outperforms several competing pricing models in terms of predictive and hedging abilities.

Statistics

Citations

8 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

93 downloads since deposited on 18 Sep 2009
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Banking and Finance
Dewey Decimal Classification:330 Economics
Language:English
Date:1 December 2009
Deposited On:18 Sep 2009 07:24
Last Modified:05 Apr 2016 13:14
Publisher:American Statistical Association
ISSN:0162-1459
Publisher DOI:https://doi.org/10.1198/jasa.2009.ap08171

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher