Header

UZH-Logo

Maintenance Infos

Mice heterozygous for both A1 and A2A adenosine receptor genes show similarities to mice given long-term caffeine


Yang, J N; Björklund, O; Lindström-Törnqvist, K; Lindgren, E; Eriksson, T M; Kahlström, J; Chen, J F; Schwarzschild, M A; Tobler, I; Fredholm, B B (2009). Mice heterozygous for both A1 and A2A adenosine receptor genes show similarities to mice given long-term caffeine. Journal of Applied Physiology, 106(2):631-639.

Abstract

Caffeine is believed to exert its stimulant effects by blocking A(2A) and A(1) adenosine receptors (A(2A)R and A(1)R). Although a genetic knockout of A(2A)R eliminates effects of caffeine, the phenotype of the knockout animal does not resemble that of caffeine treatment. In this study we explored the possibility that a mere reduction of the number of A(1)Rs and A(2A)Rs, achieved by deleting one of the two copies of the A(1)R and A(2A)R genes, would mimic some aspects of long-term caffeine ingestion. The A(1)R and A(2A)R double heterozygous (A(1)R-A(2A)R dHz) mice indeed had approximately one-half the number of A(1)R and A(2A)R, and there were little compensatory changes in A(2B) or A(3) adenosine receptor (A(2B)R or A(3)R) expression. The ability of a stable adenosine analog to activate receptors was shifted to the right by caffeine and in A(1)R-A(2A)R dHz tissue. Caffeine (0.3 g/l in drinking water for 7-10 days) and A(1)R-A(2A)R dHz genotype increased locomotor activity (LA) and decreased heart rate without significantly influencing body temperature. The acute stimulatory effect of a single injection of caffeine was reduced in A(1)R-A(2A)R dHz mice and in mice treated long term with oral caffeine. Thus at least some aspects of long-term caffeine use can be mimicked by genetic manipulation of the A(1)R and A(2A)R.

Abstract

Caffeine is believed to exert its stimulant effects by blocking A(2A) and A(1) adenosine receptors (A(2A)R and A(1)R). Although a genetic knockout of A(2A)R eliminates effects of caffeine, the phenotype of the knockout animal does not resemble that of caffeine treatment. In this study we explored the possibility that a mere reduction of the number of A(1)Rs and A(2A)Rs, achieved by deleting one of the two copies of the A(1)R and A(2A)R genes, would mimic some aspects of long-term caffeine ingestion. The A(1)R and A(2A)R double heterozygous (A(1)R-A(2A)R dHz) mice indeed had approximately one-half the number of A(1)R and A(2A)R, and there were little compensatory changes in A(2B) or A(3) adenosine receptor (A(2B)R or A(3)R) expression. The ability of a stable adenosine analog to activate receptors was shifted to the right by caffeine and in A(1)R-A(2A)R dHz tissue. Caffeine (0.3 g/l in drinking water for 7-10 days) and A(1)R-A(2A)R dHz genotype increased locomotor activity (LA) and decreased heart rate without significantly influencing body temperature. The acute stimulatory effect of a single injection of caffeine was reduced in A(1)R-A(2A)R dHz mice and in mice treated long term with oral caffeine. Thus at least some aspects of long-term caffeine use can be mimicked by genetic manipulation of the A(1)R and A(2A)R.

Statistics

Citations

26 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 08 Jun 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2009
Deposited On:08 Jun 2009 12:07
Last Modified:21 Nov 2017 14:12
Publisher:American Physiological Society
ISSN:0161-7567
Publisher DOI:https://doi.org/10.1152/japplphysiol.90971.2008
PubMed ID:19036889

Download