Header

UZH-Logo

Maintenance Infos

Nonparametric regression penalizing deviations from additivity


Studer, M; Seifert, Burkhardt; Gasser, Theo (2005). Nonparametric regression penalizing deviations from additivity. Annals of Statistics, 33(3):1295-1329.

Abstract

Due to the curse of dimensionality, estimation in a multidimensional nonparametric regression model is in general not feasible. Hence, additional restrictions are introduced, and the additive model takes a prominent place. The restrictions imposed can lead to serious bias. Here, a new estimator is proposed which allows penalizing the nonadditive part of a regression function. This offers a smooth choice between the full and the additive model. As a byproduct, this penalty leads to a regularization in sparse regions. If the additive model does not hold, a small penalty introduces an additional bias compared to the full model which is compensated by the reduced bias due to using smaller bandwidths.
For increasing penalties, this estimator converges to the additive smooth backfitting estimator of Mammen, Linton and Nielsen [Ann. Statist. 27 (1999) 1443–1490].
The structure of the estimator is investigated and two algorithms are provided. A proposal for selection of tuning parameters is made and the respective properties are studied. Finally, a finite sample evaluation is performed for simulated and ozone data.

Abstract

Due to the curse of dimensionality, estimation in a multidimensional nonparametric regression model is in general not feasible. Hence, additional restrictions are introduced, and the additive model takes a prominent place. The restrictions imposed can lead to serious bias. Here, a new estimator is proposed which allows penalizing the nonadditive part of a regression function. This offers a smooth choice between the full and the additive model. As a byproduct, this penalty leads to a regularization in sparse regions. If the additive model does not hold, a small penalty introduces an additional bias compared to the full model which is compensated by the reduced bias due to using smaller bandwidths.
For increasing penalties, this estimator converges to the additive smooth backfitting estimator of Mammen, Linton and Nielsen [Ann. Statist. 27 (1999) 1443–1490].
The structure of the estimator is investigated and two algorithms are provided. A proposal for selection of tuning parameters is made and the respective properties are studied. Finally, a finite sample evaluation is performed for simulated and ozone data.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 10 Jun 2009
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2005
Deposited On:10 Jun 2009 13:19
Last Modified:05 Apr 2016 13:15
Publisher:Institute of Mathematical Statistics
ISSN:0090-5364
Publisher DOI:https://doi.org/10.1214/009053604000001246
Related URLs:http://e-collection.ethbib.ethz.ch/eserv/eth:25957/eth-25957-01.pdf (Organisation)
http://www.biostat.uzh.ch/research/software/nonaddpenalty.html (Organisation)
http://arxiv.org/abs/math/0507426 (Organisation)

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations