Header

UZH-Logo

Maintenance Infos

Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types


Schaepman-Strub, G; Limpens, J; Menken, M; Bartholomeus, H M; Schaepman, M E (2009). Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types. Biogeosciences, 6(2):275 -284.

Abstract

Peatlands accumulated large carbon (C) stocks as peat in historical times. Currently however, many peatlands
are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs) in peatlands, using field spectroscopy reflectance measurements (400–2400 nm) on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnum covered by vascular plants (shrubs and graminoids) is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids
revealed lower correlations of R2 of 0.54 and 0.57, respectively.
This study was based on a dataset where the reflectance
of all main PFTs and their pure components within
the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

Abstract

Peatlands accumulated large carbon (C) stocks as peat in historical times. Currently however, many peatlands
are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs) in peatlands, using field spectroscopy reflectance measurements (400–2400 nm) on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnum covered by vascular plants (shrubs and graminoids) is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids
revealed lower correlations of R2 of 0.54 and 0.57, respectively.
This study was based on a dataset where the reflectance
of all main PFTs and their pure components within
the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

Statistics

Citations

6 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 01 Jul 2009
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2009
Deposited On:01 Jul 2009 05:02
Last Modified:21 Nov 2016 08:13
Publisher:Copernicus Publications
ISSN:1726-4170
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/bg-6-275-2009
Official URL:http://www.biogeosciences.net/6/issue2.html

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations