Header

UZH-Logo

Maintenance Infos

Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation


Toschi, N; Welt, T; Guerrisi, M; Keck, M E (2009). Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation. Journal of Psychiatric Research, 43(3):255-264.

Abstract

BACKGROUND: Transcranial magnetic stimulation (TMS) is an attractive research and possibly therapeutic tool for non-invasive central nervous system stimulation. However, relatively little is known about the direction, magnitude and distribution of induced electric field and current flows in tissue, and optimal setup characteristics as well as appropriate sham stimulation conditions remain largely undetermined, hampering reproducibility. METHODS: We reconstruct the conductive phenomena induced by TMS by implementing digitized coil geometry and realistic stimulator parameters and solving the electromagnetic problem over an MRI-based, realistic head model of 1mm resolution. Findings are validated by recording motor evoked potentials from the right abductor pollicis brevis muscle from healthy subjects stimulated in a stereotaxic framework. RESULTS: Several commonly used sham stimulation configurations elicit conductive patterns which achieve up to 40% of the strength of real stimulation. Also, variations in coil position of the order of a 7 degrees tilt, which are expected to occur in non-stereotaxic stimulation, can alter the stimulation intensity by up to 25%. CONCLUSIONS: In accordance with our findings, several clinical studies observe measurable effects during sham stimulation or no significant difference between sham and real stimulation, and the sensitivity of stimulation intensity to tiny coil rotations affords a partial explanation for the poor reproducibility and partial disagreements observed across clinical TMS studies. Knowledge of coil and stimulator specifications alone is hence not sufficient to control stimulation conditions, and a stereotaxic setup coupled with individually adjusted field solvers appear essential in performing reliable TMS studies.

Abstract

BACKGROUND: Transcranial magnetic stimulation (TMS) is an attractive research and possibly therapeutic tool for non-invasive central nervous system stimulation. However, relatively little is known about the direction, magnitude and distribution of induced electric field and current flows in tissue, and optimal setup characteristics as well as appropriate sham stimulation conditions remain largely undetermined, hampering reproducibility. METHODS: We reconstruct the conductive phenomena induced by TMS by implementing digitized coil geometry and realistic stimulator parameters and solving the electromagnetic problem over an MRI-based, realistic head model of 1mm resolution. Findings are validated by recording motor evoked potentials from the right abductor pollicis brevis muscle from healthy subjects stimulated in a stereotaxic framework. RESULTS: Several commonly used sham stimulation configurations elicit conductive patterns which achieve up to 40% of the strength of real stimulation. Also, variations in coil position of the order of a 7 degrees tilt, which are expected to occur in non-stereotaxic stimulation, can alter the stimulation intensity by up to 25%. CONCLUSIONS: In accordance with our findings, several clinical studies observe measurable effects during sham stimulation or no significant difference between sham and real stimulation, and the sensitivity of stimulation intensity to tiny coil rotations affords a partial explanation for the poor reproducibility and partial disagreements observed across clinical TMS studies. Knowledge of coil and stimulator specifications alone is hence not sufficient to control stimulation conditions, and a stereotaxic setup coupled with individually adjusted field solvers appear essential in performing reliable TMS studies.

Statistics

Citations

25 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 15 Jul 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:15 Jul 2009 15:46
Last Modified:06 Dec 2017 20:09
Publisher:Elsevier
ISSN:0022-3956
Publisher DOI:https://doi.org/10.1016/j.jpsychires.2008.04.008
PubMed ID:18514227

Download