Vascular risk factors and morphometric data in cervical artery dissection: a case-control study

Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch

Vascular risk factors and morphometric data in cervical artery dissection: a case-control study

Abstract

BACKGROUND: Limited knowledge exists on vascular risk factors, body height and weight in patients with spontaneous cervical artery dissection (sCAD). PATIENTS AND METHODS: In this case-control study, major vascular risk factors, body weight, body height and body mass index (BMI) of 239 patients obtained from a prospective hospital-based sCAD registry were compared with 516 age- and sex-matched healthy controls undergoing systematic health examinations in the Clinical and Preventive Investigations Center, Paris. Gender-specific analyses were performed. RESULTS: The mean body height was higher in sCAD patients than in controls (171.3 cm (SD 8.6) vs 167.7 cm (8.9); p<0.0001) and sCAD patients had a significantly lower mean body weight (67.5 (12.2) kg vs 69.3 (14.6) kg; p<0.001) and mean BMI (22.9 (3.3) kg/m2 vs 24.5 (4.2) kg/m2; p<0.0001) than controls. The overall frequency of hypertension, diabetes, current smoking, past smoking and hypercholesterolaemia did not differ significantly between sCAD patients and controls. The mean total plasma cholesterol level was identical in both groups (5.5 mmol/l, SD 1.1). Gender specific subgroup analyses showed similar results for men and women. CONCLUSION: Patients with sCAD had a higher body height and a lower body weight and BMI than controls, while major vascular risk factors were similar in sCAD patients and controls.
Vascular Risk Factors and Morphometric Data in Cervical Artery Dissection: A Case-Control Study

Marcel Arnold, MD1,3, Bruno Pannier, MD2, Hugues Chabriat, MD1, Krassen Nedeltchev, MD3, Christian Stapf, MD1, Frédérique Buffon, MD1, Isabelle Crassard, MD1, Frédéric Thomas, MD2, Louis Guize, MD2, Ralf W. Baumgartner, MD1, Marie-Germaine Bousser, MD1

Assistance Publique, Hôpitaux de Paris, Department of Neurology, University Hospitals Lariboisière, Paris1, and Clinical and Preventive Investigations Center (IPC), Paris2, and Departments of Neurology, Inselspital, Bern University Hospital, and University of Bern,3 and University Hospital of Zurich4, Switzerland

Address:
Marcel Arnold
Service de neurologie
Hôpital Lariboisière
2, rue Ambroise Paré 75475
Paris Cedex 10, France
Phone: +33 1 49 95 25 97
Fax : +33 1 49 95 25 96
E-mail : marcel.arnold@insel.ch
Key words: cervical artery dissection; stroke in young adults; risk factors

Word count: 1479 words
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in the Journal of Neurology, Neurosurgery & Psychiatry editions and any other BMJPGl products to exploit all subsidiary rights, as set out in our licence (http://jnnp.bmjournals.com/ifora/licence.pdf).
ABSTRACT

Background: Limited knowledge exists on vascular risk factors, body height and weight in patients with spontaneous cervical artery dissection (sCAD).

Patients and methods: In this case-control study, major vascular risk factors, body weight, body height and body mass index (BMI) of 239 patients obtained from a prospective hospital-based sCAD registry were compared with 516 age- and sex-matched healthy controls undergoing systematic health examinations in the Clinical and Preventive Investigations Center, Paris. Gender-specific analyses were performed.

Results: Mean body height was higher in sCAD patients than in controls (171.3 cm (SD 8.6) versus 167.7 cm (SD 8.9); p < 0.0001) and sCAD patients had a significantly lower mean body weight (67.5 (SD 12.2) kg versus 69.3 (SD 14.6) kg; p < 0.001) and mean BMI (22.9 (SD 3.3) Kg/m² versus 24.5 (SD 4.2) Kg/m²; p < 0.0001) than controls. The overall frequency of hypertension, diabetes, current smoking, past smoking, and hypercholesterolemia did not differ significantly between sCAD-patients and controls. Mean total plasma cholesterol level was identical in both groups (5.5 mmol/l, SD 1.1). Gender specific subgroup analyses showed similar results for men and women.

Conclusion: Patients with sCAD had a higher body height and a lower body weight and BMI than controls while-major vascular risk factors were similar in sCAD patients and controls.
The aetiology of spontaneous cervical artery dissection (sCAD) remains poorly known. Several constitutional and environmental risk factors are thought to be associated with sCAD.\(^1\) A previous case control study showed that hypertension tended to be associated with sCAD.\(^2\) However, knowledge on risk factors in patients with sCAD is sparse and mainly based on case-control studies comparing sCAD patients with non-CAD stroke patients.\(^3,4,5,6\) Furthermore, the relationship between body height, and body weight and sCAD has not been evaluated so far. Therefore we aimed to compare major vascular risk factors and morphometric data of sCAD patients with age- and sex-matched healthy controls.

METHODS

Patients

We analyzed prospectively collected data of consecutive patients presenting with sCAD at the University Hospital, Lariboisière, Paris from December 1996 through December 2005. CAD were categorized as spontaneous when occurring spontaneously or after an effort or minor trauma.\(^7\) In addition to the physical and neurological examinations, all patients underwent routine blood examinations, cervical MRI with fat suppression technique, and MRA or DSA, or both. The definite diagnosis of sCAD was based on cervical MRI and MRA or digital subtraction angiography (DSA), or both.\(^8,9\) Clinical and imaging findings of some patients have been reported previously.\(^10,11,12\)

Recruitment of Controls and Matching Procedure

Controls were randomly selected from healthy persons undergoing systematic health examinations at Investigations Préventives et Cliniques (IPC) Center, Paris. The IPC subsidized by the French national health care system, offers all working and retired individuals and their families a free medical examination every 5 years. It performs about
25,000 health examinations per year for people living in the Paris area.13 Two to 3 healthy controls examined during the same period than the dissection occurred in our patients, were randomly selected and matched to each case for age and sex. Selection of controls proceeded in a blinded fashion.

Morphometric data and vascular risk factors

Pre-admission vascular risk factors and morphometric data of patients were recorded from admission and hospital reports and by a structured interview with the patient or his relatives, if the patient was not able to provide adequate information. Healthy control subjects were investigated at the IPC Center, Paris, by a standardized autoquestionnaire and biological and clinical examinations. The questionnaire included information on body height weight, and body mass index (BMI) was calculated. The following vascular risk factors were assessed: Current and past smoking, hypercholesterolemia, hypertension, and diabetes mellitus. Hypercholesterolemia was defined as a total plasma cholesterol value of >5.2 mmol/l. Cholesterol level was measured under fasting conditions. Hypertension was defined as previous or current antihypertensive medication or a history of hypertension (systolic blood pressure (BP) >160 mm Hg or diastolic BP >95 mm Hg), or both.14 The previous WHO definition of hypertension was used in this study in order to have a homogeneous definition during the whole observation period.15 Diabetes mellitus was defined as a preadmission history of diabetes mellitus.

Statistical analyses

Statistical analyses were performed with the SPSS 10.0 for Macintosh program. For differences in categorical variables, χ^2 test was performed. Continuous variables were compared with Mann-Whitney test.
Logistic regression analyses were performed to determine an independent association between sCAD and morphometric data and vascular risk factors. The variables included were sex, age, body height, body weight, BMI, current smoking, past smoking, diabetes, hypertension, hypercholesterolemia and total plasma cholesterol level. 95% Confidence intervals were calculated. After Bonferroni correction for 11 analysed variables, the two-sided significance level was defined as $p = 0.05/11 = 0.0045$.

RESULTS

The study includes 239 patients (50% women) with sCAD and 516 healthy controls. Of the 239 patients with sCAD, 150 (63%) presented with internal carotid artery dissection (sICAD), 71 (30%) with vertebral artery dissection (sVAD), and 18 (7%) with both, at least one sICAD and sVAD.

The Table summarizes the results of univariate and multiple regression analyses comparing sCAD patients and controls. Mean body height was greater in sCAD patients than controls (171.3 cm (SD 8.6) versus 167.7 cm (SD 8.9); $p < 0.0001$), and mean body weight was lower in patients than in controls (67.5 kg (SD 12.2) versus 69.3 kg (SD 14.6); $p<0.0001$). BMI was lower in patients than in controls (22.9 (SD 3.3) versus 24.5 (SD 4.2); $p < 0.0001$). The overall frequency of the other variables did not differ between patients and controls.

Gender specific subgroup analyses showed similar results. Mean body height was significantly greater [$p < 0.0001$ for women (95% CI 0.843-0.936) and men (95% CI 0.855-0.941)] and mean body weight [$p=0.011$ for women (95% CI 1.009-1.075); $p=0.003$ for men (95% CI 1.016-1.080)]. Mean BMI [$p=0.005$ for women (95% CI 1.038-1.234); $p=0.003$ for men (95% CI 1.048-1.251)] was significantly lower both in female and male patients than in controls. The other variables did not either differ between female patients and female controls nor between male patients and male controls.
DISCUSSION

We found that patients with sCAD were taller, had a lower body weight and consecutively a lower BMI than healthy controls. This so far unreported association was observed both in men and women. In contrast major vascular risk factors were not associated with sCAD.

The relationship between taller stature and lower weight and sCAD is difficult to explain. Potential explanations include redundancies of cervical arteries in taller subjects or mechanical factors such as increased neck mobility in taller subjects with a longer neck. However, this hypothesis cannot be proved by our data because the length of the neck was not measured, and no imaging was performed in controls. Genetic factors such as more frequent abnormalities of the connective tissue in taller subjects might be another explanation. Patients with Marfan’s syndrome are known to be taller than the normal population. However, in our sCAD patients only two women suffered from connective tissue disorders.

Interestingly, the literature on height and the risk of stroke in the general population is controversial. Herbert et al. observed no association between height and the risk of stroke. In another study, taller men tended to have a lower risk of stroke. Although hypertension is a risk factor for stroke and aortic dissection, it is not clear whether individuals with hypertension are at increased risk for sCAD. Pezzini et al. reported a trend towards a higher prevalence of hypertension in sCAD patients compared with matched controls. We observed no significant association between hypertension and CAD in the present study. Further prospective population-based studies and large multicenter studies are needed to determine whether blood pressure is associated with sCAD.

Diabetes, smoking, hypercholesterolemia and total cholesterol levels were not associated with sCAD in the present study using healthy controls. Our results are difficult to compare with previous studies in which patients with ischemic stroke not related to dissection served as
controls. Nevertheless, further large studies with healthy controls are needed to firmly exclude a weak association between sCAD and those vascular risk factors.

Our study has several limitations: Body weight and height were self-reported by patients. However, the validity of self-reported measurements of body weight has been shown. Moreover, there may be a potential selection bias among controls. It may be possible that subjects undergoing systematic volunteer health examination do not represent the general population. However, comparison with French population based studies showed similar frequencies of vascular risk factors and similar morphometric data. Finally, we analyzed only the main vascular risk factors and other potential risk factors such as ethnicity, C reactive protein, homocysteine, oral contraceptive use and migraine were not investigated.

In conclusion, our study showed a significant association between sCAD and increased body height and lower body weight and lower body mass index. Our results support the lack of association between sCAD and major vascular risk factors.
Table. Demographics and potential risk factors in 239 patients with spontaneous cervical artery dissection and in 516 healthy controls

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients</th>
<th>Controls</th>
<th>P – value Univariate (95% CI)</th>
<th>P – value multivariate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, women (%)</td>
<td>119 (50%)</td>
<td>263 (51%)</td>
<td>0.763</td>
<td></td>
</tr>
<tr>
<td>Mean age, years (SD)</td>
<td>44.4 (9.4)</td>
<td>44.4 (9.7)</td>
<td>0.983</td>
<td>0.216</td>
</tr>
<tr>
<td>Mean plasma cholesterol, mmol/l (SD)</td>
<td>5.5 (1.1)</td>
<td>5.5 (1.1)</td>
<td>0.785</td>
<td></td>
</tr>
<tr>
<td>Mean body height (SD)</td>
<td>171.3 (8.6)</td>
<td>167.7 (8.9)</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mean body weight (SD)</td>
<td>67.5 (12.2)</td>
<td>69.3 (14.6)</td>
<td>0.312</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mean body mass index (SD)</td>
<td>22.9 (3.3)</td>
<td>24.5 (4.2)</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Current smoking</td>
<td>65/238 (27%)</td>
<td>163/516 (31%)</td>
<td>0.235</td>
<td>0.448</td>
</tr>
<tr>
<td>Past smoking</td>
<td>41/238 (17%)</td>
<td>96/516 (19%)</td>
<td>0.648</td>
<td>0.902</td>
</tr>
<tr>
<td>Hypertension</td>
<td>41/239 (17%)</td>
<td>80/516 (16%)</td>
<td>0.565</td>
<td>0.087</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>3/236 (1%)</td>
<td>6/508 (1%)</td>
<td>0.918</td>
<td>0.616</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>122/178 (68%)</td>
<td>332/515 (64%)</td>
<td>0.324</td>
<td>0.240</td>
</tr>
</tbody>
</table>

P indicates difference between subgroups by χ² test, Fisher’s exact test or Mann –Whitney test in univariate and multiple regression analysis; CI, confidence interval
Acknowledgments: We thank Pietro Ballinari, PhD, Inselspital, University Hospital Bern, and University of Bern, Switzerland, for statistical analyses.

Competing interests: none

Funding: none
References

